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Summary

A fuel cell is an electrochemical energy conversion device that combines hydrogen and oxygen (from the
air) to produce electricity. Currently, the Proton Exchange Membrane technology (PEM) is the most
promising and is being developed by United Technologies Fuel Cells. One of the major obstacles in the
commercialization of PEMFC technology is the performance loss at high current density due to liquid
water accumulation in the porous components of the cathode compartment. This accumulation limits
oxygen transport to the cathode and reduces PEMFC efficiency and performance stability.

In this work we aim developing a novel theoretical framework to evaluate the feasibility of attaining
significant improvement of fuel cells performance and stability by increasing the transport processes in
porous partially fluid filled cathode compartment through the application of acoustic and structural
waves. The specific goal of the project is to develop a generic model of partially saturated multiphase
flow in highly porous media (Fuel Cell cathode compartment) under structural waves.

We have developed a unified model of structural/acoustic wave propagation in the PEM cathode
compartment and coupled it with mass transfer in the porous media. This is the first known to authors
model of such kind fully coupling acoustics and filtration in porous medium. A new perturbation
technique allows deriving the governing equations for multiphase flow under acoustic streaming. It has
been demonstrated that the phase saturations have strong impact on wave dynamics in porous continuum.
Explicit expressions for generalized multiphase Biot-type coefficients that explicitly depend on the phase
saturations have been obtained. A novel generalized filtration law that accounts for dynamic loadings,
varying saturation, and solid structure distortion describing mass transfer in this complex but generic
system has been found. We also have been able to connect hysteretic phenomena to relaxation process
due to filtration velocity gradient. The Lagrangian approach has been employed in order to develop
consistent government equations. We have also conducted highly precise tests on flow measurements
throughout porous media with and without applied acoustic signals.

The developed homogenization technique allows deducing effective body forces in mass transfer
equations from acoustic terms and simple analytical evaluation of frequency and wave number
dependencies of the effective mass driving body forces. It has been demonstrated using averaging
principle that vibration gives rise to net change of saturation inside porous medium. This effect is
analogous to the known phenomenon of acoustic streaming but has not been discovered before.

Numerical results demonstrate that applied structural vibration/acoustic loading (i) intensifies the process
dynamics or in other words decreases time of transient process; (i) might drain out up to 5-10% of
distributed in porous media water if the mechanism preventing reverse acoustic-driven imbibitions is in
place; (iii) The fast water removal from the surface is crucial for acoustic-driven drying. Based on the
numerical and experimental results number of practical recommendations optimizing material selections
and performance regime has been made. Developed methodology is useful for wide range of Fuel Cell
problems as well as for wide range of other porous structures and could serve as an important design tool.
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Program Overview

Technical Objectives

In this work our target is to develop a theoretical framework to evaluate the feasibility of
attaining significant improvement of fuel cells performance and stability by increasing the
transport processes in porous fluid filled cathode compartment through the application of
acoustic and structural waves. The specific goal of the project is to develop a generic model of
unsaturated multiphase flow in highly porous media (Fuel Cell cathode compartment) under
structural waves.

In order to attain this goal the novel model predicting effects of structural acoustics on partially
saturated mass transfer as well as effect of dynamic saturation on wave characteristics should be
developed.

To the best of our knowledge, structural or acoustic excitation has never been applied to the fuel
cells in particular and to the porous membranes in general. This project combines computational
and experimental efforts including:

1) Developing of fully coupled physics-based model of structural and acoustic waves
propagation in partially water- filled porous media and induced multiphase (gas/water)
transport through the partially water- filled vibrating porous media;

2) Experimental calibration and verification of the models using company-developed rigs
and fuel cells;

3) Numerical demonstration of transport process and fuel cell performance enhancement.

Technical Approach

We aim to improve the efficiency of a PEM fuel cell by intensifying the gas/water transport
processes using either structural or acoustic waves. Structural excitation can be used for inducing
waves that would propagate within the different layers of the fuel cell and perturb the trapped
liquid water within pores, thereby enhancing the transport process. Introducing pulsations in the
airflow past the cathode can also intensify the diffusion process; this is expected to set up
pressure gradients in the fuel cell that would pull the trapped water cavities into the air stream.

The first step in this effort involves choosing of the modeling strategy. All possible approaches
can be separated into two categories: 1. Continuum mechanics analysis including wave
propagation and mass transfer analysis; and 2) Micro-structural / micro-mechanical
considerations accounted for the local interactions. The second approach is good for the analysis
of the role of material morphology but not suitable for waves and flux analysis. We chose the
macroscopic (continuum mechanics) modeling approach, which is the best suitable for the
analysis of wave propagations, multiphase fluxes (not one or even hundreds droplets) in real
geometry and for coupling acoustic and mass transfer properties and time-scales The
macroscopic modeling framework naturally (i) provides a unified system of governing equations
describing the whole physical system; (ii) provides the solution of problems with real geometry,
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layers, configuration, regimes, and boundary conditions; (iii) investigates effect combining both
“elastic-wave” part and “viscous — mass transfer” part coupling transport and acoustic
properties; (iv) the dynamic model provides a comprehensive description of multiphase flux,
amount of trapped water and system behavior during drainage and imbibitions — hysteresis.

The second step, which will be reported, is the development of the novel governing equations
accounted for multiphase unsaturated flow in vibrating porous media. The system should be
developed in a consistent way to accommodate simultaneously all physical phenomena. Using
the developed governing system (i) We study wave propagation and attenuation in partially
saturated porous media. (ii) We calculate different waves in the structure and couple them with
pressures and water/gas fluxes. (iii) We calculate inhomogeneous water saturation level with
space and time — S(x,t) and relate it with oxygen transport. (iv) This approach needs to be
matched with micromechanics in order to complete the governing system with constitutive laws.

This is followed by validation of the models in developed controlled laboratory experiments.
We conduct highly precise tests on flow measurements throughout porous media with and
without applied acoustic signals. Also, we conduct the full scale test on company developed Fuel
Cell in order to compare power output with and without acoustic impact and under different
acoustic regimes. These tests serve as model calibration and validation.

The validated models will then be used for predicting the level of structural/acoustic response
needed for achieving the targeted improvements in fuel cell performance. The high-level
actuation methodology will be chosen based on energy and efficiency considerations. The choice
of actuation scheme will then be used to identify promising actuator design.

The major accomplishments are as follows:

(i) We have developed a unified model of structural/acoustic wave propagation in the PEM
cathode compartment and coupled it with multiphase mass transfer in the partially saturated
porous media. This is the first successful attempt to model coupling between acoustics and
filtration in porous massive.

(ii) It has been demonstrated that the phase saturations have strong impact on wave dynamics in
porous continuum. Explicit expressions for generalized multiphase Biot-type coefficients that
explicitly depend on the phase saturations have been obtained. We also have been able to
connect hysteretic phenomena to relaxation process due to filtration velocity gradient.

(iii) A novel generalized filtration law (generalized D’Arcy law) that accounts for dynamic
loadings, varying saturation, and solid structure distortion describing mass transfer in this
complex but generic system has been developed.

(iv) The new developed homogenization technique is crucial for numerical analysis of high
frequency impacts. It allows circumventing the restriction on maximum allowed number of finite
elements to resolve spatial frequency of the acoustic wave. Using asymptotic analysis we obtain
simple analytical evaluations of frequency and wave number dependencies of the effective mass
driving forces

(v). We conduct the extremely precise experimental procedure to measure bi-layer/substrate
permeability under vibration. Test results for different substrates demonstrate (i) existence of the




effect, (ii) instability in highly hydrophobic structures under vibration and the need in wave
generation.

(vi) Extensive numerical analysis of the vibration-induced mass transfer has been conducted and
on the base of obtained numerical results (as well as experimental data) we have made the
practical conclusions focused on (i) industrial (fuel cells) implementation and (ii) optimal
material design rwequirements and operational conditions (iii) fundamental understanding of
mass transfer in unsaturated porous media.

Developed methodology is useful for wide range of Fuel Cell problems as well as for wide range
of other porous structures and could serve as an important design tool.

Technical Accomplishments

1. Technical Background and Problem Formulation

Hydrogen fue!

—_
§ -—> .
i — 0, + 4 ¥ 4H > 2H0 | Mor S
— A A SRR B 7
Electrons flovs round
the external circult

Oxygen, usually from the air

1amfme Electrolyte

Figure 1. Basic Cathode-electrolyte-anode construction of Fuel Cell and electrode reactions [1]

The basic physical structure, or building block, of a fuel cell consists of an electrolyte layer in
contact with a porous anode and cathode on either side as shown in Figure 1. The cells run on
hydrogen, which reacts with oxygen from the air in such a way that a voltage is generated
between two electrodes. The electrolyte in this Fuel Cell is the ion exchange membrane (Nafion
or other similar polymers) and is an excellent proton (H") conductor. The electrons flow to the
external circuit generating current.

Transport and reaction processes at the cathode limit PEMFC performance. Oxygen present in
the air stream flowing through the channels in the so-called bipolar plate (BPP), is transferred to
the platinum (Pt) catalytic particles that are dispersed in pores throughout the cathode, through a
porous diffusion layer and a porous sub-layer (not shown in Figure 1). Water produced by the
electrochemical reaction at the cathode is partially evacuated through the same porous medium
to the air stream.

Limitations of PEM cell performance at useful current densities (20.5 Alem?) are primarily
dominated by mass transfer of water. The power density (i.e. W/cm?) of PEM cells is typically
highest at the current density at which performance starts to drop drastically due to reaching the




so-called “limiting current”. In order to deploy PEM fuel cells in high power density applications
(e.g. automobiles and ships), stable performance must be achieved at these high current
densities. As the power density increases, the weight, volume, and cost of the fuel cell system
all decrease, all of which are critical metrics for successful market penetration.

In order to obtain high current density, oxygen must be transported to and water removed from
the electrochemically active catalyst sites. In a sense, the necessity for water removal comes
from its role in inhibiting mass transfer of oxygen. Since the PEMFC operates at a low
temperature, water hang up (known as cathode flooding) in a liquid state is unavoidable. This not
only impacts PEMFC performance but also leads to performance instability [2]. Ideally, the
water that has been produced at the cathode is driven to the air channel where the air would
entrain excessive liquid water. At the same time this airflow would supply the necessary oxygen
for the fuel cell. Thus, the directions of oxygen and water flows are opposite to each other.

In this work we analyze the feasibility of trapped water removing and increase of the material
effective permeability by application of structural waves to the system. There have been a

Substrate

25
> 175 »

+

Photo D. Condit UTRC

Figure 2. Structure of Fuel Cell Cathode compartment and directions
of major mass flows.

number of works analyzing waves propagation in fully saturated porous media [3, 4] — so called
Biot models. All known to us publications study the influence of properties of porous materials
and fully saturated them fluids on waves characteristics. In contrast, we study wave propagation
and attenuation in partially saturated porous media and extend Biot’s approach for multiphase
(solid, fluid, and gas) media. Also, we develop a novel approach combining both “elastic-wave”
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part and “viscous — mass transfer” part coupling transport and acoustic properties. In other words
we, first, develop a generic model allowing us to evaluate water and gas transfer induced by
structural waves. We calculate characteristics of different waves in the structure and couple
them with water/gas pressures and induced inhomogeneous in space and time water saturation
level- S(x,t) and, also, relate it with oxygen transport answering the practical question — could
the structural waves increase oxygen transport to catalytic sites. Generally, we develop the first
model of acoustic streaming in unsaturated porous structures.

As shown in Figure 2, the cathode compartment is the layered structure of three porous materials
with different morphology. The role of morphology in
wave propagation is crucial and affects all model
parameters, such as Biot parameters and Leverett-
function, in other words, water transfer depends on
morphology and is different in bi-layer and substrate. At
low saturation flow is always channeled and water can
be decomposed into connected water and trapped water.
Trapped water does not “feel” external pressure and,
. WTP subsequently does not move to WTP, blocking oxygen
; paths. Trapped water is the “trace” of water “lost from
the mainstream.” There are two competitive processes —
4 imbibitions (from main stream) and drainage to the
mainstream and structural or acoustic waves depending
on their parameters might effectively “clean” or vise
Figure 3. Schematic effect of waves on versa “spurge” the porous media changing the effective
water transfer cross section of oxygen path as shown in Figure 3. Only
structural vibrations might induce transport of such
trapped water “mega-droplets”. Parameters and
characteristics of the most beneficial waves (for example, rotational or compression) need to be
defined by numerical analysis for real-life geometry using the implemented model.

Wave propagation

In this first annual report we present our results on executing the contract according to the
statement of work. The plan of this technical progress report is as follows: 1) Problem
Formulation (above); timetables and budget. The report is continued with physics-based 2)
Model Approach and Equations’ derivation using the fact that characteristic time scale of
structural waves/vibrations is much smaller than characteristic time of mass transfer and that
wave amplitude is small. 3) New asymptotic technique has been developed and we report some
obtained analytical solutions. 4) In order to calibrate the model and verify the model predictions
we conduct two different sets of experiments. In this progress report we review the first
Experimental Results and Technique for the permeability measurements with and without
applied vibration. We close this progress report with some concluding remarks and the list of
tasks that left to be executed during the work on the contract.
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2. Scale for description of multiphase flow in vibrating porous medium.

For the description of the flow in the real macro structures one requires the scale of description /
that is much less than the structure size but much larger than the size of a pore of the porous
material - {1 pore <<U<< Ly } This allows for continuum mechanics type of description of fluid

Liquid V;

Gas Vy Fig.4. Mesoscopic volume ¥ = ¥+ ¥+ ¥, for averaging procedure. It is
Solid V. . small enough to consider all velocities constant and large enough to
s include many pores.

flow and vibration wave propagation, with the structure specific being taken care of by the
geometry and boundary conditions of the domain and with porous medium specifics being
incorporated into coefficients of the resulting system of equations. The later must be either
measured experimentally or calculated with other methods that allow explicit description of the
material morphology.

The chosen intermediate scale requires that the equations to be formulated through variables
averaged or smoothed over /,,, scale. The usual procedure (see e.g. [5 and 6]) is to split the

solution domain into sub-domains of the size /, Fig.4, and substitute all pertinent quantities like
kinetic and elastic energies, mass flows, stresses and local pressures, with the quantities
averaged of the volume of the sub-domain.

Multiphase materials deformations are always inhomogeneous at microscale, consisting of

Figure 5. Microstructure of porous materials of FC cathode compartment

various constituents with different properties. Increasing the elementary volume of materials, we
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homogenize the properties. A [minimal] statistically representative material volume is called
Representative Volume Element (RVE) [6]. An RVE must include a large number of micro-
elements to represent local continuum properties. Fuel Cells cathode compartment consists of
three porous layers with different morphology, which predefines the characteristic size of the
RVE. Thus, for Toray paper (sub-layer) with the typical pore-element size is about 20 p in width
and 3p in depth, average size of RVE will be a block with the dimensions
IxIxb~1004x1004x204 . For the by-layer with the typical size of 3u the average RVE size is

15 p to ensure that at least a hundred microstructural objects are averaged in the RVE (as can be
seen from the micrographs in Fig 5. Photo D. Condit, UTRC). In further consideration all sub-
volumes are considered as points and all differential operations are understood in space of these
points. The values of all physical quantities are equal to average values of the same quantities
over the sub-volume. In this problem, we assign three characteristics (for solid, liquid, and gas)
for each material point instead of one as used in single material analysis. The following notations
are used in each material point:

{us,u,,u g} - displacement of solid, liquid and gas fractions;
{vs, \/\ 4 g} - velocities of solid, liquid and gas fractions;

{V;, v, Vg} - volumes of solid, liquid and gas phases;
VotV +V, =V,

v
{e‘s,g,,ag} = {%’%’Vg} - volume fractions of solid, liquid and gas phases;

g tet+e, =1

{ Ps> P pg} - densities of solid, liquid and gas fractions;

3. Lagrange formulation of the elastic vibration and inclusion of dissipation

The complete problem formulation of elastic waves propagation in porous medium filled with
several fluids requires formulation of conservative part that results in vibration of all constitutive
media and dissipative part that accounts for fluid viscosity and elastic energy dissipation in the
solid matrix. For correct account of vibration impact on the flow dissipative and elastic terms
must be mixed in visco-elastic constitutive relations of Maxwell-Voight type that involve both
stress-strain and stress-strain rates pairs. Although for many materials parameters of visco-
elastics constitutive relations have been measured and/or computed, the same for porous
materials and especially for the recently invented porous membranes are absent. Here, we
suggest simplified approach that is based on the fact that the time scales of vibration induced
with the external source in kHz range and higher and filtration of fluids in the porous matrixes
are very well separated. Additionally, computational implementation becomes much more
simple as it allows natural computation of elastic part in Lagrangian coordinates and filtration
part in the Eulerian ones.
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The problem, therefore, is to split the formulation of Free Energy functional for the whole
problem into Lagrange function for elastic vibration of all constituents, which has originally
been formulated by Biot [3], and the part that is responsible for filtration due to slow varying
gradients of hydrostatic pressures. Subsequently, various dissipation mechanisms are included to
obtain generalization of the Darcy law and hysteresis phenomena.

Thus, the goal is to derive expressions for kinetic energy K, elastic energy U and dissipative
function R in terms of averaged over representative volume physical quantities. Having in mind
that generally all three functions depend on {u, v,0u/dx}, the final equations have the following
form:

i i_ + i _aR_ +é(a_L)_a_L_%= 0 (1)
ox\ d(du/ax) | x| 8(ov/ox)) at\ov) ou  ov

where L =K -U and x is coordinate vector.

Theory of liquid flow through porous media uses equation of mass balance closed with the help
of Darcy equation. It is the purpose of this work to show how vibration waves described by the
system (1) influence filtration rate. The main philosophy of this approach is to add small elastic

vibrations and mass transport induced by them “on top” of viscous flow. It is done in the further
paragraphs.

3.1 Kinetic energy K.

Original Biot equations [3] have been derived for only one phase filling the porous medium.
Two or more phases coexisting inside porous matrix require additiona! treatment and general
guidelines on how to write correctly the mass tensor. The correct expressions for the mass tensor
in fully saturated by single-phase porous media (Biot problem) have been recently obtained by
an averaging procedure in [7]. We generalize this approach for the multiphase situation in order

to obtain consistent expression for the kinetic energy and inertia force as functions of
constituents.

We are looking for expression for kinetic energy K = %(psvi +p,v:+ pgv;) through averaged

over some small volume of porous medium ¥V values of {(vs),(v,),<v g>}, where symbol

() = % _[dV() means averaging procedure over the RVE as shown on illustration Figure 5.
Each phase velocity { sV V g} can be re- written as a sum of its average value and a deviation

as follows: {(vs)+Avs,(v,)+Av,,(vg>+Avg } Spatially averaged kinetic energy is a sum of

terms with averaged squares of partial velocities, which can be expressed in the following form:
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(K)=g{o () vt} pa{vi))-
%(pses <((vs> +Av, )2> + P& <(<v,>+Av,)2> + Py <(<vg> +Av, )2 >j 2

It is important to note that volume fractions {es,gl,ag} appears before averaging operation due
to the fact that velocities {vs,v,,v g} are non-zero only in their respective sub-domains

{Vs,Vl,Vg}within a RVE. Modifying (2) we get the expression for the averaged over RVE

kinetic energy:

(=L 0 e+ 0 e e (00

Due to solid matrix rigidity the term p.&, <(Avs )2> is usually small and we neglect it from

further consideration. To close system of equations of motion one has to assume relations
between {<(Av ,)2 >, <(Av g)2>} and {(v:>, (v ,),(v g>} as was pointed out in [7].

To obtain classical Biot kinetic energy terms for two phases flow, only {<(Aw ; )2 >, <(Aw ¢ )Z >}

should be expressed through mean velocities of constituents:

((av,)) (v, _Vs>22
<(Avg)z> (vg—vs>

This parameterization is similar to the assumption of Poissonian statistics for velocities
fluctuations. The final expression for the average kinetic energy in this case is as follows:

2<K> = Psés <vs >2 +PiE <V1>2 * Py <Vg>2 +(p181'31 + pgggﬂgl)(<vl>_<VS>)2 +

(P&iBy + Pyt By )((vg>—(vx))2

B By
Ba B,

&)

)

One phase situation that has been treated by Biot corresponds to only one term -<(Av ,)2> and

2, +1=a- tortuosity in Biot’s notation. In the two-fluid model B, describes correlation

between relative motion of gas versus solid and correspondent motion liquid and vise versa.

The dynamic force acting on a system is the derivative of the kinetic energy with respect to
velocity. Using (4) we can obtain the following form for (inertia) D’ Alamber force:
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(P&, +
( 0 plglﬁl +pg€g gl + _plglﬂl _pgsgﬂgl —plslﬂgl _pgegﬂg
—(K
FDAlamber 8v,.< ) PiEiPg + Pt By v
y o| a 8 pi + ’
FD'Alamber = FDAlamber = .| = K =—. —pe - ,E 0 dwv
FIDAlamber ot avl( ) al P 181 = Pt B P, + pye, By v/
g o pE, + &
——(K) _ _ 8°g
P& By — PytB, 0
a\’g J e gEve plglﬂg/ +pgsgﬂg

It is important that all elements of mass matrix explicitly depend on’ volume fractions of
constituents, that easy to relate with local fluid/gas saturations. This is the new result because
classical Biot theory considers only fully saturated porous media and the solid body porosity is
the primary characteristics of that. Now, the mass matrix depends on volume fractions and cross-
correlations between relative phases motions that need to be approximated and/or experimentally
measured. Usage of the averaging procedure allows explaining of non-diagonal form of the mass
tensor in the Biot model [3]. It also provides connection between experimentally measured fluid
densities and effective densities that is to be used in equation for wave propagation (1).

3.2 Elastic energy U

Usage of averaging procedure of the previous paragraph allows explaining non-diagonal form of
the mass tensor in the Biot model [3]. It also provides connection between experimentally
measured fluid densities and effective densities that is to be used in equation for wave
propagation (1). One can also try to use the same averaging procedure as was used above, for the
derivation of the averaged elastic energy U as a function of displacements averaged over RVE.
This would be analogous to derivation of turbulent models, fluctuations being imposed by the
randomness of the porous matrix rather than by the local flow instability. However, as numerous
attempts to derive elastic constants show [4], those expressions strongly depend on material
morphology. Here, we follow more pragmatic approach of Biot [3] and derive expressions' for
elastic energy with parameters being measurable in specified set of experiments or calculated
using direct microscale modeling. More important that for our purpose is sufficient to combine

correctly equally phenomenological theories of liquid stagnation in porous media with the Biot-
type vibration equations.

With standard notations of theory of elasticity small strain is

1 Ou; - T .
e;==|=—L+—L| and O=¢, +e, + ey; - is dilatation. Because there are no stresses in the
2{ox; o

elastic body at zero strain, and stress is the derivative of elastic energy with respect to strain,
there should be no linear terms in the energy expansion on strain. Terms with power higher then
three would mean existence of several metastable states typical for phase transformations and

! Of course, we use phenomenological considerations here, so it is derivation in physical but pure mathematical
sense.
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not existing in elasticity. The expression for elastic energy can be written in the general form as
follows:

U=

%/1 O +2u-) e e+ self elastic energy of porous solid %)
i

3,(6,.0,)+3, (Bs ,Hg) + energy of liquid and gas dependent on solid distortion

We assume there is no shear in gas phase. Additionally, taking into account that liquid flow rate
in porous media is very low; we may neglect the shear component in liquid strain tensor.
Therefore, the elastic energy for gas and liquid phases depends only on volume change or, in
other words, strain dilatation. Stress tensor for solid matrix and pressures for liquid and gas can
be obtained by taken correspondent derivatives:

3 03.16.,0
O-is'=glj_v=ﬂ'es'5ij+2'ﬂ'eij+a\sl(0s,0])+ g(s g)
' ey 26, 20,
oU 03,6,,0

ou  33,,.6,)
g —_g . O = = g\"s>"¢g
oF =6y Pe Oy = 5 =5

g

Here &;is Kronecker delta with components of unity matrix. Functions 3, (6’5,9,,g) account for the

pressure change due to liquid and gas motion under solid deformation. The models for S (Hs .0, g) are

discussed in separate paragraph. Below we consider some special cases and the corresponding potential
energy forms.

3.2.1 Small vibrations

In the absence of large motions and near equilibrium between all three phases, U can be
expanded up to the second terms in (6’5 20,4 ) As has been already discussed above, it means that

at this internal state, reaction of all phases on applied deformation is reversible and elastic. We
emphasize here that the theory we are constructing in this work is elastic correction to the “pre-
existing” viscous flow. This assumption is fully justified for small vibrations, when signal
magnitude does not exceed 5% of structural characteristic size. Naturally, bigger loads would
lead to the structure fatigue failure.
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Thus, in the absence of large motions and near equilibrium between all three phases, U can be
expanded up to the second terms in (93.,9,_8 ), where (49,'g) is defined as

(0,.8,)=(""©,+6,/ @,+6)

U=U+U,+U, +U,+U, +U,,

where
U, = %l 0424 Ze,.j -e, - self-elastic energy of porous solid;
ij

Uy=M,-6,-6,+M, -6, -6,- energy of interaction between liquid and solid and gas and solid;
1 1 . . .
U = 5 M, 65U, = 3 M,-6;  -self-elastic energy of liquid and gas;
M,-6-6, -energy of interaction between liquid and gas;
F-©,+P,-0, -energy of interaction between liquid and gas and correspondent

static pressures; and simple form for 3, (8,0, )=P _-£ -©, has been chosen.
p p g \Ys l.g lg “lg l.g

Here, M, and M, are self influence bulk coefficients for liquid and gas correspondently,

M,, (i=1Is,gs, gl) are coefficients of mutual interaction. Constitutive relations relating stresses

(pressures) and strains are obtained by differentiation of elastic energy with respect to strain
tensor and take the form:

s oU
o; =g=1-q-5g+2-p-eu+M,_‘»Q, +M,, -6,
i
ou
o',;:—e,-p,-&,j:-é?: 6 +M,-6,+M, -6, M
[
ou

g'—— . -
g; = & P S,

=——=M -6 +M, -0+M,-6
aeg 4 g & &

3.2.2 Biot theory

In his original paper [3] Biot considered fully saturated porous media with only one liquid. He
also disregards porous pressure P,””. Under these simplifications, from relationship (7) setting

? (Here, (f"” e, @,) are quasi equilibrium values of liquid and gas dilations caused by static

83, (6., 0,)
FY)

l.g

pressures, conditions of quasi equilibrium being

=0.)
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all gas-related parameters as well as P""“to zero we obtain the constitutive relations:

ou
O'; =-a_3T:ﬂ‘0s‘5ij+2.’u.eij+Ml.}/l.01

’ ®)
I oU
0;==¢ p-0y=——=M, G+ M,;-y,-0,
06,
We substituted liquid volume fraction from (7) with material porosity, which, by definition,
equals volume fraction of pores in the solid. Due to the fact that solid is fully saturated; liquid
volume fraction is identically equal to the porosity. Thus, we deduced Biot’s constitutive model

from ours as a limiting case.

By this point we have considered Lagrangian and its constituents. In other words, we have
derived all relations describing the elastic behavior of the system. In order to complete “elastic
part” modeling and before we switch to dissipative effects, we would consider developing
methodology for constitutive model coefficients (M, and y, ) determination.

4 Elastic-Biot-type coefficients

41 Effective Media

First, all Biot coefficients can be expressed directly from the effective bulk moduli of porous
media, matrix, and a fluid [4]. The problem of estimating the effective properties is not trivial but
might be performed by methods developed in the theory of mixtures [8]. Generally, the best we
can do is to predict upper and low bounds of the effective parameters, because its precise value
depends on geometrical details. It is important to note that all such estimates work well only for
isotropic media. The extended review of methods is given in [8].

The best achievable bounds without specifying geometrical details are the Hashin-Shtrikman
bounds [9]:

KHSi — Kl + - 82 - ;
(Kz _Kl) +‘91(K1+%.u1)
‘uHSi -y + & ©)
! g 28(K, +2u)
(/‘lz—ﬂl) + l 1 4 :
Su (K, +34)

where K; are bulk moduli of phases, p; are shear moduli of phases, and &; are volume fractions.
These estimations for Toray paper (in-plane) are:

12:10*Gpa=174 Psi=K,, <K <K™" =333 Msi=23GPa, where initial fibers
compressibility has been taken equal K 4, =20Msi=130GPa iz, =25msi=1 60GPa

Bounds for shear modulus are 0= 1, S u < 1% = 4.5 Msi = 31 GPa. Difference in upper and

low bounds are extremely large as expected, because there are significant differences in matrix
and inclusion properties. Experimental data for in-plane elastic constants varies from 40 Ksi till
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140 Ksi. We assume that K, = 60 Ksi>. We apply empirical approach of Marion [8, p. 177]
and calculate the weight coefficient, which reduces the upper bounds to experimentally

measured  values: w= ’e—"_—_ ~0.018. Thus we should expect in

plane 1, ~0.018-31 GPa = 558 KPa = 80 Ksi. Measurements throughout the thickness gives
extremely low number of K, »1500 psi. This might be modeled using Hashin-Shtrikman

bounds if we imagine that fibers contact only over small “point-like” area and effective porosity
2
in this direction would be £ ~0.9997. Indeed, £ ~1 -—dm""% , =1 -%600 =0.9997 and

benveen
K™% %5000 psi®.
There is also known test result that compression modulus of the composite of Toray paper and
bi-layer together is 1699 psi. Assuming weights proportional to the thickness of each layer (25
pm and 175 pm) we might estimate K bylayer = 1.5—2.5 Ksi. Hashin-Shtikman estimates based on

dual porosity give bounds 150 psi = K™~ < K < K"* =7 Msi = 50GPa. Such a big difference

arose because we did not take into account the compactions of sintered powder. As noted by M.
Kachanov, the stiffness of the media decreased when the pore shape is concave and we’d better
use Mori-Tanaka approximation.

4.2 Estimation of Biot Coefficients for Solid-Liquid-Gas System
The “elastic” system that we consider now has the following general form:

Oy =A-0,-8;+2-pre;+ My -6+ M, -6,

Of ==&, p, 5, =My -0, +My -6+ M, -6,

First, the dependence of the Biot coefficients on saturation is evaluated. It is clear that to satisfy
the relations above near the limits &, -0 and &, — 0, the elastic constants must have the

following dependency on saturations:

M, =¢ ‘mls§Mg =& -my;M;=¢,-m

Mgs =g, -mgs,Mg, =g, -mg,,Mg =&, m,

(1

From this it follows

? We understand that there were attempts to measure Young modulus, so Bulk modulus should be about 3 times
smaller for isotropic materials.

* Porosity here depends on the area of contacts and might vary a lot. We also can approximate the experiments if we
use  previously  described Marion  weight factors and d =5 Hm, and  subsequently,

_ _25 ~ . - . HS _ 2\ _ .
£=1-2% 1 ~0993; K =~0018 (K™ =175Ksi)=1350 psi.
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M,=¢-5,-m

g gl

Comparing Biot coefficients [3] for two-phase case:

(l—e ——ILJe K,
M?IGI_ K
l-g —Iy + & K/
K K, (12)

Biot _ K
M ;o=

K
_K K,
1-¢, ﬁ( + &, /(l

where index f stands for “fluid” (gas or liquid), with the equations for
{M M M M }above one gets:

l.g* Is® gs?

Is = =&y Mgs: :gg'mgs
l—gs—ly +gSKS 1—£s—]y +£sKS
K, K, K, K, (13)

And finally, defining moduli K = % ¢ :_% ; K, = P % one gets:
s g

(Kb_Ks)'es"l‘Mls ‘HI+Mgs 'Hg =0
Mls'gs+(Ml_glpl)’01+Mgl'9g:0 (14)
My -6, +M,-6+(M,-£,p,) 6, =0

This homogeneous linear system has a non-trivial solution only if its determinant equals to zero:

Kb_Ks MIs Mgs
M, M,-gp M, =0 (15)
Mgs Mgl Mg ~&gPg

Solving this equation with plausible assumption that K, << K, << K, and substituting

expressions for coefficients above, we obtain
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MIS'M

M, =2——8 ¢ .t .m
gl 1 “g gl
Ks_Kb

4.3 Simplified Expressions for System Coefficients

Consider stiff matrix and assume that the equalities X ¢ <<K, << K, and K << K are satisfied.

In this case, coefficients have very simple form:
M, = I-¢ &K My=gK;; M,= 1= ‘€5 Kg; My =¢,K,; and finally,

& &

2
KK K \1-¢
5

5 5 S§

More accurate expression for the interaction coefficient is

2
KK, [1 ~&, —ﬁ)
K I

‘€
My, ~-2 . g - It can be simplified to the form given above or neglecting

(Ks—Kb) (6‘5)

2
KK, (1-
the term —K—b, to the simple expression M, ~ -2 ——& 1=& & E,.
K ¢l K, | ¢ e
s

s s
(17)

Thus, for Toray paper the full set of constants is 4, plane = 10 kST g1, .. =35ksi; & =0.75; for

through thickness we need touse A, =1.2 ksi; u 1 = 0.7 ksi and the value of porosity in this direction

is not clear at this time. Density of Toray paper is Pioray =450-1634 % . For the bi-layer data are very

few and far between. However, the first shot might be Ay =1-2 ksi; p, =1.5-3 ksi; ¢ ~0.25; and

density p, = 16347’:;%. For further use one needs the following data:
Kyuer =22GPa; K, =1.2-107 GPa . Viscosity of water is e =107 Pa-sec and

o =107 Pa-sec.

Closing this section we emphasize that here we report novel results revealing dependence of the
constitutive model coefficients from the species volume fractions or saturation. We recognized
and derived exact expressions showing that dynamic stress — strain relationship strongly depend
on local saturation of porous media. Thus, the pressure distribution under acoustic signal is
naturally inhomogeneous in an inhomogeneously saturated media.

We have completed the analysis of the “elastic” deformation. Next, we focus on “viscous-
dissipation” part, and, then; couple them in a unified model. Inelastic effects are added to the
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model by addition of appropriate dissipative function. This function will describe flow
phenomena and solid stress attenuation.

5. Dissipative function R

Dissipative function determines amount of energy that mechanical system losses per unit time
[10]. Dissipative processes are always irreversible, so the dissipative function should not change
sign and, consequently, to the first approximation should be positive definite quadratic form. We
assume there are three major dissipative processes in the porous partially saturated continuum.
First, it is energy losses associated with the friction due to liquid/gas phase relative flow with
respect to the solid matrix. We would call this D’Arcy term RP'49  emphasizing the mass-
transfer role in this process. The second, energy is lost due to waves damping/attenuation in the
solid matrix, or in other words, R*™ terms responsible for viscous friction in dry solid matrix.
The third term R, is the energy dissipation rate due to spatial gradients of relative solid-liquid

and solid-gas motion. This term, in particularly, describes hysteretic effects.
R= RD'ArLy +RSolid +g{g[ -

(wg) G (wg) + Y (YOG ) + (18)

d
4 KO &

Here we denote throughout vectors w, ., = ¢, . -(v,, —v_ | filtration velocities of liquid and gas.
g 1g =€g \Vig ~Vs q g

We also introduce symmetric part of velocity gradient tensor vij for solid matrix — strain rate tensor

and solid strain dilatation rate - $, as well as filtration dilatation rate for liquid and gas as follows:

s ! ! !
s 1 av;g av] s s s awl 8 awZ,g 6W3’g
v, =— +—=|, & =v,+Vvy +Vy, @,= + +
i s 11 22 33 1.8 P d a
X X X3

2{&x; ox
In fluid mechanics equations velocity (v =) plays the same role as displacement (u) in solid
mechanics.

Dissipation function R describes inner friction and should be zero if there is no internal
motion [10], particularly in case of rigid motion. It means that this term should depend on
velocities gradients. For isotropic body two viscosities (bulk and shear) should be introduced as
it shown in (18).

In special case of weak liquid-gas interaction R, (a),,a)g,Bs) can be simplified to just a sum
R ,(a),)+ R g(a)g). Functions R, , (a),, g) and R, (w,,a)g,Ss) are discussed in special paragraph
below. Under assumption of small oscillations near equilibrium, R, (a),,a)g,gs) has a general

quadratic form [11]:
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1 1
mg,(m,,wg,ss)jze, O] + Ry 0+ Ry, @, +R, 0,9, + Ry 00, -,

In this case, the corresponding friction forces are linear with filtration dilatations rates and equal
to zero at zero dilatation rates. To include hysteresis into this formalism, non-quadratic form of
R, (a),’g) must be preserved.

According to the basic equation (1) the corresponding dissipative forces can be obtained from
the dissipative function by derivation with respect to appropriate velocities and velocities
gradients. We start with forces caused by filtration. The first three terms in the right hand site of
(18) give the general expression for Darcy type forces:

poao _ OR __OR _ OR

Ov, ov, ov,
F[D'Arc‘}' = __ai - 8, _l'l_l I_lwl + gi __._MK—; (193)
P gV g
! 0 0
B = e e, o, Vo e,
g 0 0

As everywhere in this report, subscripts (s, 1, and g) correspond to solid, liquid, and gas phases
accordingly. K, , K,,and K gl are tensors for liquid permeability, gas permeability and cross liquid-
gas permeability. Last term characterizes the flux of one of species when pressure is applied to another.

All permeability tensors components are functions of liquid saturation S = % org; and &, accordingly.

The velocities gradients dependent terms contribute to internal stresses and need to be added to
expressions (7) for completion of constitutive relations:

. OR™H BR N (a)) oR (a) )
s diss 4 ! ( & 4
sdiss _ O =¢- 3-8, +2-nv, —g—1 s o " e\&) s
i 6v,j av,-j 6" Us " 0y N vy { 6&), ij g 8a)g i
iss iss aER aSR @,
at;‘d =-&-p” O = avl =¢ 615) 1)5:1 (20)
I} ()
. . oR ()i 9 )
o_gdlss=__8g'pgdlss.5i.= g=£g 8( g)é.,'j
ov, o,

For filtration part, an assumption is that Mo K, ¢ are the same as those for acoustic part. In other words,

frequency dependence of 4o K, ¢ is neglected. Thus, relaxation forces for filtration of gas and liquid
are:
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Siltr F]D'Arcy — ER_ _ (81 )2 _/'_l[_ [-IVI + (gl )2 _M K;}Vg

8V, K,

(19b)

filtr D" rey =_51i___ (gg )2 ngtglVg +(gg )2 ____\MK;,IVI

8 av, K,

Here, absolute velocities of liquid and gas V, , stand instead of relative velocities

W, =&, -(v, P vs) as filtration velocity of solid is zero - non-consolidating porous material.

6 J-Leverett function, dissipative functions and hysteresis.

To provide a model of two non-mixing fluids that includes effect of residual saturation we have

Liquid-air interfaces in
packing of rods (Collins
1961)

to account for strong dependence of material
properties on saturation and wettability. Liquid

saturation is defined as S A &

¢ l—gs
Capillary pressure P is usually defined as the
pressure difference between two (wetting and
non-wetting) phases as a function of the
saturation

Therefore, we define the capillary pressure as:
P.(S)=F - P,. For modeling and correlation

purp

s
SO S 1 0Ses é?o% 80 : 60 ™ 40 ZO_ISM 0
Figure 6. Schematic explanation of J-Leverett function the 1 |
capi ] |
. . . < 5 .
lary pressure can be described by a dimensionless § | . i <
. AP(S ,K 8 12 | s &
Leverett-J function: J =—(—) —, where o is E R ‘il.é‘:'«
o \¢ T |8 | \ I3
interfacial tension between the two phases and gthe & 3r 35 ¥ llz;sf
porosity of the solid matrix. Definitely, we can write g% {\\ |- Drainage Igé
down the same kind of functions for each phase and 2 2I— } ;‘: -
their difference would determine the capilla S \\ ! \\)\ \
pressure. In our modeling we would call J, g(51 3 I N -
- . . ’ ’ ' 1 \ \h
Leverett function for liquid and gas separately. In . :Imbibilion \:\QR\J ™A
principle they depend on 6, as well, but the G20 5p 40 L © o

dependency is unknown and requires additional . o e
d/ . 1 imulati Figure 7. Hysteresis in drainage-imbibitions
measurement and/or microscale simulations. One process (From Bear [15])
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can identify J,'g(a,'g) with P77, Leverett function correlates data over several orders of

magnitude change in permeability as stated in [15]. Capillary pressure is a measure of the
curvature of the interface separating phases, therefore Leverett J-function is a strong function of
morphology. During a subsequent water-drive and turns off some amount of water eventually
remains capillary trapped, floating as disconnected blobs in the pores. The residual water
saturation S is determined by the pore space morphology and the structure wettability. S, is
called the “irreducible saturation”, which correlates with the amount of trapped water and for
wetting phase appears to be around 0.08 [16].

It is important to note that J-Leverett function describes quasi - equilibrium state and small
deviations from the equilibrium, which corresponds to slow species flow through the porous
media. As has been already mentioned, this slow flow does not appear in Biot-type dynamic
(wave) equations. Only combined “slow” and “fast” motions describe mass transfer
phenomenon. General expression of the appropriate (Leverett) term of the Lagrangian or free
energy is the function of the saturation and material properties”. Dropping all details, for the sake

of clarity, we can say that in the first approximation RLe"ere! — gstatic (S)+ R™'(S). This form
d Rstatic OR Jast
+

leads to the expression for capillary pressure P(S)=B-P, = — 2 J(s)+ F(S).
¢ os as ?a:‘ Jast

_ . . O .
Dependency of constitutive relations on § = —;T’ leads to the hysteresis [12]. The rate dependent

part might be specified in Lagrangian by R, . (a),’g ) = f"“ F, . (s)ds . In general, it is multi-

valued function with even power of terms to insure it positive definiteness. Piecewise-linear
approximations have been suggested [12].

As shown on illustration in Figure 7 for wettable materials to drain fluid from the porous
material the higher pressure should be applied then to imbibe to the same saturation. It means
that when we have pressure oscillation in a hydrophilic material the residual water should stay in
the porous media and vise versa for hydrophobic materials. The first conclusion from this

qualitative picture we can do is that one need to use hydrophobic substrates in fuel cells to
appreciate cleaning effect of pressure oscillations.

7. Equations of filtration for two non-mixing fluids and generalized D’Arcy
law.

Fluid filtration in porous media is traditionally described by equations based on mass
conservation [5, 12, 13, and 15] rather than on Biot type equation [3]:

%(glp/)“‘v‘(p/(vl"‘wl)):o
5 and w; . =g -(v,, —V,) @n
5P ) V(2 (Ve +w,)) =0

*Recent advances in thermodynamics of multiphase flow in porous media [for example, 5,11,12] provide a
theoretical framework for a proper and consistent definition of Leverett function in acoustic field.
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In the case of saturated incompressible fluids those equations are simply direct consequences of
the definition of the dilatation: 6, =V -(u, —u,). In the two-fluid case when saturations & and

£, change both in time and space, situation becomes more complicated especially taking in mind
that Leverett functions and R, (a)s,a),! g) are measured as functions of & and &, rather than
6,’8-3,’g(95,£,,g ) One can consider, therefore, the two continuity equations as equations for
additional variable &, and solve them together with Biot equations for vibration. Note that

because the continuity equations are conservation laws and expressed as full time derivatives,
their contribution to Lagrange equations taken with the Lagrange multipliers don’t change
equations of motion.

Note that when liquid and gas can be considered incompressible, densities can be cancelled in
(21) and rate hysteresis function from the Leverett expression, which in general depends on flux
dilatation, can be simplified to the form mentioned in the previous section as follows:

0 og;,
E,g (V ) l:gl,g E(ul,g — U ):D = F},g ( 6tg J . (22)

Equilibrium condition requires that the resultant of all applied forces be compensated by internal
stresses. For the liquid the total pressure gradient should be equal to the sum of D’Alamber and
D’Arcy forces (see equations 7 and 10).

v (_ & pl) - FIDAlamber + F]D'Arcy (23)
Next, without loss of generality, we neglect all “gas terms” and obtain the simple form of the
generalized D”Arcy law for unsaturated porous media under acoustic loading.® Expressions for
liquid components of these forces are given in the derived expressions (4a) and (19) accordingly.
Note, that, as everywhere in this work, hydrostatic pressure has the sign minus in accord with
continuum mechanics sign agreement. Thus, equation (23) can be re-written in the following
form:

0 0 sy .
V(-&p)= '—(ﬂngz (v, - v, )) +—(pEvi)+ JEK W owi=g(vi-v)
ot ot K,
The D’ Alamber term depends on both relative (vi-vs) and absolute liquid velocities. Resolving
this equality with respect to the flux q £ w, and also taking into account that
p, = P*" = M6, - My8,, we immediately obtain:
K K| V{gP oy, —u
q=-——"2— —(—I—)——Ai(V(g,61)+yV(£,0s))+ P o g (w —u,) PO gli‘.’L 24)
H & & g Ot ot

Here the flux tensor depends on all components gradient of pressure, dilatations and kinematical
terms. This is the novel generalization of the D’Arcy Law for the acoustically loaded
unsaturated porous media. The first term represents generalization of “traditional” pressure
gradient corrected for the variable saturation. Very important, that saturation gradient

6 In all further derivations and calculations we use the full system and simplified expression here only for illustrative
purposes.
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Ve

P— = PVIne¢ is also strong driving force specific only for unsaturated inhomogeneously filled
£

porous structure. This term plays an important role but only if either external pressure or
“external” dilatation has been applied. The second term explains the role of solid and liquid
deformation as a driving force for the flux. Due to dilatation, fluid is squeezed out of the
compressed pores due to induced increased fluid pressure in the “extended” area with reduced
liquid pressure. The two last terms show the role of dynamics (acoustics) on the liquid flux.

Using the new formulation (24) and assuming everywhere that saturation does not change
significantly, we might estimate orders of magnitude for the required parameters of structural
acoustics impact to achieve the comparable effect with static pressure. D’Arcy term for the fuel
cell cathode compartment is generated by application of the pressure of 1 psi over the distance of

200 m. Thus, the “static” pressure gradient is of the order of Vp = Lpsi =34F6 ﬁ. Letting
200 um m

magnitude be 1% of the thickness, we immediately obtain that a dynamic term has the order of
2

. 0 .
magnitude p, 5;15 pA&* ~1.E-3»° and, subsequently, equating these two pressures, we
t

obtain that the required frequency is about 30 KHz.

8. Constitutive relations and complete system of governing equations

By this point we have described all forces acting in the system and the system possible reactions.
We introduced elastic and dissipative models. Combination of “elastic” and “viscous” equations
completes physics-based system and allows us to predict the influence of vibration on mass
transfer and dynamics of saturation on vibration parameters. Using these derived partial models
one can get the following constitutive relations:

s sdiss aU aR
o) +o) =$+5§=’w’ Gy H2pee 69 8420V + M, 6+ M, -6,
i i

~-& -F,(a),)-é',j ~¢, - F, (a)g)-&

i

oUu oR
—+

! 1 diss
jto; = Y.
06, Ow,

diss _ oU oR _ diss —
o +oyf —EZ awg__gg'(pg+pg )'&J”Mg'gg+M85'0S+M8"0’+€8'F8(w8)

Here, each of the matrix equations corresponds to solid, liquid, and gas phases accordingly. As
was mentioned already J is a static part of Leverett function for each component (liquid and gas)
and F is a “hysteresis” part. These constitutive relations should be supplemented by the
definition of the Leverett function, simplified form of which is:
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os
T(e)-—=F + B =J(&) (26)

Some particular expressions for 7(e) and J(&) can be found in [12]. However, physics-based
derivation of these coefficients is ongoing task closely related with numerical analysis and will
be presented in the final report. The last equation for F, has been derived in [11] using

consideration of Coleman and Noll on positiveness of entropy production

Complete system of governing equations needs to be added to the constitutive relations.
Combination of “elastic” and “viscous” momentum (or in other words Newton’s) equations for
each species has the following general form:

s sdiss
ao"] + ao‘ff - FSDAla.mher + FSD‘Arcy

ox ; ox .
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The second of these equations we have already used deriving novel generalization of D’ Arcy law
for unsaturated porous media under impact of dynamic loading. Thus, we have described stress-
strain relationship, forces causing these stresses, and constituents displacements and velocities
resulting from these stresses. To complete this system description one needs to add the mass
transfer equations (filtration).

%(glpl)'*'v'(p/ (Vl +W1)) =0
(28)

2o oo, 3, 1w, )0

Finally we have the system of governing equations describing multiphase flow in porous media
with acoustic streaming. The transmission of sound through unsaturated porous media can be
predicted only in the context of the extended Biot model we have developed here. The water and
air move simultaneously with solid matrix. The completed fully coupled model predicting waves
propagations in multiphase porous media and acoustic streaming is given below:
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The next two vector equations describe induced waves and acoustic streaming in liquid and gas
phases.

My V(V-u,)+ M, -V(V-u)+ My -V(V-u )+V(e,-F}(V-[e,-a%(u,—-us)])]=
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Close with (filtration) mass transfer equations:
0 0
5(31/’/)"‘ v '(plgl E(VI T, - )) =0

0 0
'é;(ggpg)"'v'(pggg };(Vg U - )) =0

Note that when liquid and gas can be considered incompressible

o 66‘1,
F, (V .[g,,g E(u,,g —u, )D =F, ( azg ]

As was already mentioned in the section 7 in accord with results in hysteresis in [12].
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There are solid-matrix attenuation terms, which have exactly the same general form as elastic
part but displacements are substituted with appropriate velocities. As in case of elastic solid, the
wave equations describe dilatational and rotational waves. For the case of strong coupling
between phases there exist two compression waves — fast and slow. It is important to note that
characteristic time scales for wave propagation and for D’ Arcy mass transfer are very different,
which makes direct numerical analysis difficult if impossible but at the same time allows
asymptotic analytical solution. What is more, asymptotical transformations can prepare the
system for numerical analysis.

Flow under static pressures is expressed through “filtration - viscous” velocities as follows:

0 0

With the constitutive relations for static pressures (here, as everywhere in this report, saturation
S=¢,/¢):
0

Pg—}7=J(S)+T--a—£S

The general feature of the developed model that we account for material morphology and
performance regime (start up, shut down, long steady working regime, etc.) in order to predict
fuel cell performance and degradation caused by increased water residual content.

9. Model summary.

9.1 Physical phenomena included in the model.

The model separates elastic and plastic properties of three immiscible phases involved in mass
and momentum transfer on the basis of difference in time scale for vibration (elastic part) and
filtration (plastic part). The plasticity of the solid porous phase is neglected as well as all
temperature effects.

The vibration part is represented as three interconnected elastic bodies, only solid having non-
zero share module. Two types of dissipative mechanisms have been included: damping of the
vibration proportional to velocity gradients and momentum transfer due to phase-to-phase
interaction.

The filtration part is modeled as the motion in slowly varying static pressure fields, dissipation
mechanism being of D’ Arcy type i.e. proportional to relative velocities of liquid and gas.
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The above-mentioned two types of motion interact through dependency of saturation field at
every point. It means that elastic parameters and slowly varying static pressures are functions of

saturation. Two mass transfer equations for liquid and gas phases contain contributions from
both vibration and filtration parts.

A special equation that closes the system is a constitutive relation for two static pressures and the
rate of saturation change. This equation determines the stationary state and, therefore, remaining
liquid after all transient process dies out.

Of special interest are non-classical boundary conditions that result in the net desaturation of the
porous sample. They should account for dependency on the flux direction and on the rate of the
water removal from the boundary for the net effect to exist.

9.2 Physical phenomena not included in the model.

Ideally, there should be only one system for momentum transfer that is not divided into vibration and
filtration parts. This could be important in all cases when time scales between fluids flow due to external
pressures and caused by vibration are close to each other. Such model would require using mixed elasto-
plastic constitutive relations of Maxwell-Voight type.

Another potentially important gap to fill in this model is to evaluate dependency of parameters in Leveret
function on vibrations. That would require deep analysis of droplet instabilities trapped inside porous
structure. The results unavoidably are morphology dependent.

10  Analytical approach and Scale Separation

The primary goal of this work is to show that a periodic perturbation of the solid matrix or
pulsation of the gas phase causes non-periodic flow of the liquid component. Although the
complete solution of the full system of equations requires numerical simulations (results of
which will be reported in the final document), it is possible to observe the effect using the fact
that all filtration processes are substantially slower than the vibration/pulsation period. Under
such circumstances one can split the complete system into vibration (Biot) part and filtration part

and solve them iteratively. In the first step all saturations {es,s,,sg} or in other notation

£
{S =1 & , 1-8= ] & } and { P pg} that makes the whole system nonlinear are
—& —&

considered constant. The periodic solution of the resulting linear system for {us,u PR g} can be

found. At the next step, these periodic perturbations are imbedded into filtration equations as a
source term.

0 0
5"(8//71 )"’ v ‘(P;gl a(“l —u )) =0

0 0
E(ggpg)'*'v'(pggg a(“g _“s)) =0
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We assume that the periodic signals are in certain sense small in order to resolve the problem
analytically. Having a small parameter at hand one can use asymptotic expansion based on
averaging principle [17] to obtain an averaged filtration equations that describe the slow non-
periodic flow caused by periodic perturbation.

One more important motivation for the asymptotic analysis of the derived equations comes from
the fact that the accuracy of the numerical analysis of the wave processes is spatially limited by
the size of the finite element (or the step in the finite-difference scheme). Therefore, even
theoretically, it is practically impossible to develop a direct computational approach for the
analysis of high frequency waves interactions with mass flow process. The only feasible
approach is to homogenize the mass transfer equations over high frequency acoustic vibrations
treated as effective body forces.

For the sake of simplicity and without loss of generality we assume that solid matrix is rigid
(&, = const), both liquid and gas are uncompressible at the applied pressures. Also, D’Arcy

flows for both components are uncorrelated. Crucial assumption for analytical evaluation, is that
displacements {us,u ,,ug} are caused by an actuator attached to the porous matrix in such a way

that, when it is turned off, {us,u,,ug}=0. So, the case of small vibrations, magnitude of the
displacements is proportional to small parameter {us,u ,,ug}~ A . Non-destructive acoustic

excitation is applied with 4 is a small amplitude of external source.

Using equations (21) and derived generalization of the D’Arcy law we can write filtration
equations with periodic terms down as follows:

piE (V(‘E} [Pl -F ])—'aa_tg/FlK)

4 - 0
pggz;'llug1 (V(gg I:Pg _FgP ])_EggF;()

-1
K;' /—’fi £, Ky
K= #
’i 5K K}
Hg

P
F my-V-u +m-Veou +my-£,-V-u,
e
F, mgs~V-us+mg,-g,-V-u,+mg-V-ug

a[%”J=va-K- (30)

01\ £, P4

where
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and constitutive relations for {P,, Pg} :

Pg -B =J(e,,sg)+F(§€,,-§;£gJ
and {as,e,,eg}

E+g+e, =1

The following simplifications make the system more tractable analytically:
- {p,, P, } = const - both liquid and gas are uncompressible;
- K;,' - Darcy flows for both components are uncorrelated;
— &, = const - solid matrix is rigid;
Re-writing these relations through unique variable — water saturation S, we immediately have:

N - 0
?_(S)-ﬁ. ' Vs (US[h 27426

R VN L e By
where

&£ =1-¢, - porosity;

E'Y ( M -V-u +m-Vou+em, SV, ]
My VU +&-my-(1-5)-Vou, +m, -V-u,

,
(Fl“] p/'%“/"’(p/'ﬂ/+Pg‘(S_]—l)-,Bg,)§(u,—us)

\pg 'g'“g +(pg Bt o ’((I_S)—l _1)'ﬂg’)§;(“8 —“5)

. Og, 0Og,
Here equation P, —P =J (e,,ag)+ F (éﬁ,—ati) has been resolved versus Z—f due to the

simplifications above, with two branches correspondent to drainage and imbibitions respectively.
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J7(8)+T- B for drainage [?ﬁ < 0)
ot ot

J"™(8)+T 95 gor imbibition [Qﬁ > Oj
ot ot
As it can be seen from (30), two forces F/,and F/ stemmed from a source of vibration affect

fluid flow in porous material. As they are linear combinations of {us,u a0 g} and their time and

spatial derivative, one can conclude that in general the spectral composition of the forces
includes both natural frequencies of porous medium (Biot waves) and frequencies that
correspond to the particular porous layer structure. The whole picture, therefore, is both
geometry and material dependent and requires numerical analysis for any specific geometry. One
can show, however, in very general terms, that periodic forces F,Kg and F/, cause non-periodic

mass transport. Similar results have been obtained in [18] in different setting. An approached
adopted here is that one originally proposed in [17] and more generally in the theory of normal
forms (see for example, [19]). We are looking for a substitution of original variables such that in
the new (slow) variables the mass flow equation does not contain vibration terms, both the
substitution and the new mass equation being sought as an asymptotic expansion in the small
parameter A .

P(x,1)= F,(x,t) +A-pl (E,F,,E,x, ) + A% pl (E,E,_,x,t) +. €1))
g 28 t

Al fast (vibration terms) parameters affect the solution through the cross-correlations averaged
over the time period. Substituting expansions (31) into flow equations (30) and equating terms at
the same powers of small parameter we obtain the sequence of recurrent differential equations,
from which all unknown functions of the substitution could be defined. In other words, we find a
solution for s, as a functional of slow variables {S,P, Fg }. This term, being purely vibrational,

gives zero contribution into equation for the slow variables {S, 7, P, }. The first non-zero
contribution comes from s, , that could be found as a functional of {S,P,P,} in the same way

as s, .All details of calculations are shown in the Appendix 1. Finally, the slow non-periodic

flow is expressed through all of these components that play role of body forces. The most
important results are as follows: (i) the principal term of the asymptotic solution (S,B,P,)

represents slow multiphase flow under static external pressure (D’Arcy flow) without acoustic
impact. (ii) First correction (at A') is identically equal to zero, so there is no first order effect of
periodic vibration on mass flow. In the second - quadratic term the effect is noticeably
pronounced. All vibration terms are coupled and their self and cross-correlations cause
additional driving forces similar (in some sense) to the effect of gravitation on the reservoir flow.
The final expression for slow non-periodic flow is the following:
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) due to saturation gradient
due to pressure gradient
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Influence of vibration induced pressure
and saturation gradients.

| (Non-zero only for structural deformations

One can see from the expression above that total non-periodic flux is a sum of the static
unsaturated flow, vibration induced flux enhancement due to pressure gradient, saturation
gradient and their cross correlations. It is worth to note that without external pressure gradient
the vibration does not cause any non-periodic effect. The third term has always-positive
coefficient (permeability assumed to be a power function of saturation [15]) and increases with
inhomogeneity of saturation, i.e. the bigger droplets the stronger effect. All terms include local
pressure gradients, caused by deformation gradients, so the local waves- induced dilatation
gradients are crucial.

To obtain simple formulas for vibration-induced contribution to the mass flow we use method of
harmonic balance. In the simplest case of harmonic acoustic excitation, we can express all
parameters as mono-harmonic wave functions’:

u, =*u,-cos(w-t+k-x)+" u, sin(w-1+k-x); i=slg;
and calculate additional pressure and permeability that this simple vibration induces in porous
material. First, a response to this driving force needs to be calculated in the following form:

c s

5 S, 5

Pl =1°p t-cos(w-t+k-x)+1 “p! -sin(w-1 +k - x)

p) °pf P
Substituting this into differential equations obtained for A' and relating variables
{s, (x.1),p(x,1), pF (x,t)} , one  finds the linear system for  amplitudes
{ °s1,°8,° Pl ply pF, Dt } (see Appendix 2), from which explicit expressions for self and cross-
correlations are to be found. As have been shown by the method of harmonic balance the self-
correlation of the first asymptotic term is 5% = ”F '_F¢ "2 ~w*. All derived formulae are given

at the end of the Appendix 2 and the work on the analysis is still in progress. However, it is clear
that the acoustic streaming driving force is proportional to the ratio of the fluxes induced by

7 It can be easily generalized using Fourier series
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K,u . .
I” + ok -a . General relation between

dilatation and by the saturation gradient F ~ po* -
I

acoustic streaming driving force and frequency depends on dependency between wave vector
and the frequency and, therefore, varies with geometry. For the general case of the plates

. . — 2 —
dispersion relation is k ~ % and, subsequently, 57 = ”F ' F% " ~ 0% +@’*, where

parameter y is controlled by geometry. Below we show a limiting case where an analytical
analysis allows for qualitatively important results. Shaking of the structure, as a rigid body is a
particular case we investigated during our permeability test program. For this case driving force
is proportional to the square of the frequency, to the magnitude of the vibration, and to the some

power of the saturation level: F ~ pa?® - Amp-S*, allowing estimation of the frequency role on
induced water transport.

We close this section with some concluding remarks. Based on the first results of the asymptotic
analysis one may see that (i) Acoustic streaming effect in the porous unsaturated media does
exist; (i) Result depends both on global geometry as well as on local effects. The power of the
source depends on geometrical parameters. (7ii) Important [and now possible] to study wave
excitation for different options: air pulsation, structural waves, surface waves, etc.

1 Experimental Study

We have conducted tests intended to measure liquid water permeability of the cathode layers
under vibration, static pressure and their combination. Under operating conditions, water is
wicked away by the pressure difference between catalytic layer (where water is generated) and
water transport plate (WTP) with negative pressure (sink). In the development of the
Water Out (Vacuum experimental methodology we have used and

A modified original approach of UTC Fuel Cell [20].

A scheme of the setup is shown in Figure 8 and the
picture of the stand is given in Figure 9. A sample
(porous layer from fuel cell cathode) of two-inch
diameter is placed between two bi-polar plates. The
two bi-polar plates (WTP) are then housed between
two Plexiglas plates. O-rings are inserted between the
Plexiglas and plates contact to provide a good seal.
One of the plates is connected to a water reservoir.
The second plate is channeled and the vacuum pump
RO provides a vacuum (negative pressure). The water
/ - flow rate is measured by the high precesion balance

Bolted down ~ 40-60 |
psi equivalent

with the accuracy of 0.1 microgramm. We apply
Water in (Supply vibration using shaker on top of external constant
side) pressure gradient to the sample. We compare the flux

Figure 8. Specimen Setup (permeability) under different conditions.
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The principal difficulty of this test is the necessity of comparison between very small fluxes of
the order of microgramms/sec. Another principal limitation of the developed setup originated
from small size of the specimens (thickness of the porous carbon paper is about 200 p). Using
such a test setup is impossible to generate a dilatational wave within this porous structure.
Taking all these circumstances into account we have applied vibration (shaking) of the whole
setup as a rigid structure. It means that during this type of the tests we were able to investigate
only the role of inertial forces but dilatation. Analysis of the role of the dilatational waves is now
ongoing task and bigger setup and results will be discussed later. However, current results
demonstrate the non-zero effect of the zero-mean vibrations on the permeability.

We have tested two types of the porous substrate materials with different degrees of
hydrophobicity. The first set of tests have been conducted on 10-wt% PTFE (10% of Teflon), 90-
wt% carbon sublayer. This material manifests low hydrophobicity. We apply two different
pressure gradients. The first is water pressure driving water into the porous membrane; the
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Figure 9 Permeability measurement test setup

second one is the so-called vacuum pressure, driving water out of the porous plate. The porous
plate is not completely sealed in the sense that gas pressure is assumed to be equal to
atmospheric. Typical test results are shown in Figure 10 when water pressure was 20 Kpa and
vacuum pressure was 10 Kpa. During both reported tests, the flow rate was steady and
approximately equal to 0.205+0.005 milligrams per minute. The shaker were started at the
point of time=4 (red line on the plot). Power of the signal was 500 puV/ms with broadband
frequency excitation level.
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As one can see from the Figure 10 the increase of the flux has been observed. If we integrate the
area under the experimental curves, we obtain the total flux. Thus, the total flux increase due to
specimens shaking equals to 0.1 milligrams. Total amount of additional released water is about
15% of usual connected water flow. Estimations of the amount of trapped (disconnected) water
based on Leverett function show that 15% is close to the upper bound of the possible trapped
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Figure 10. Permeability Measurement with water
pressure=20 kPa; vacuum pressure=10 kPa
water amount. Thus, during vibration, almost all trapped water has been removed. In both tests
the the amount of the released water was the same. The increase in water flux starts after 2-3
minutes after turning the shaker on. Electronic balance reading takes place every minute, so the
difference is related to the time-reading rounding.

The second set of test have been performed on highly hydrophobic materials, where 50% of
teflon is added to the carbon matrix. The flux has been unstable under water pressure of 3 psi
and vacuum pressure of 1.5 psi. It requires some time to accumulate water on the specimen
surface prior it penetrates into specimen. Because of high hydrophobicity, water practically does
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Figure 11. Comparison of water flow in highly hydrophobic porous matrix without (left) and with (right) vibration
source.

not stop inside the specimen. As a result one can observe discrete droplets coming out the
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hydrophobic specimen on the graph in Figure 11(a). Initially the time interval between droplets
was 2000 minutes, and slowly decreases with each successive dropllet cycle. It might be
explained by the increased of residual saturation in the porous media and subsequent decrease of
the Leverett function. In other words, with the increase of the residual saturation, the
hydrophobic resistance to new water imbibition getting smaller and the droplets frequency
increases. When we turning the excitation source on, the time interval practically immediately
decreases and stabilizes at 400 minute. It demonstrates the strong vibration effect on the residual
water distribution and on the amount of residual water saturation in highly hydrophobic
structures.

As a conclusion to this section, we note that extremely precise experimental procedure has been
developed and conducted. Test results demonstrate a) existence of the effect of zero-mean
vibration on directional unsatutrated water flow in the porous structure (fuel cell cathode

compartment), b) instability in the water flow in highly hydrophobic structures under vibration
and the need in wave generation.
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12. Numerical Implementation and Results.

12.1 Computational Tool

At this part of the final report we focus mostly on the Task 3 developing a comprehensive
numerical model. We implement the derived constitutive equations into the finite element
software FEMLAB and conduct numerical analysis with different boundary and initial
conditions. FEMLAB has been chosen because of its ability to combine physical/mathematical
problems arisen from different fields in one generalized system. Combination of the different
types equations into one template is the major advance of the FEMLAB. In our problem, we
combine hyperbolic system (waves equations) for dynamics response with mass transfer
equations. In our system equations (26)-(28) can be modified to the system of two elliptic
equations and the first order (transport) equation for water saturation S. We use the advantage of
multiphysical coupling of (1) acoustics and (2) porous media multiphase flow. FEMLAB allows
running uncoupled problems (pure dynamics) and (static mass-transfer) automatically without
any reformulation.

The underlying structure of FEMLAB is a system of PDE, which might be represented in one of
the following forms: coefficient form (better suitable for almost linear problems), general form
(divl =f) where matrix T" and forces-vector f are explicitly specified by user; and weak form
that is very convenient for coupled problems. It is important to note that in finite element
method, all equations eventually should be expressed in weak form anyway. Thus, we implement
all our equations as a user formulated routines in FEMLAB template.

FEMLAB integrates seamlessly with MATLAB that provides the computational platform.
FEMLAB models run in MATLAB structures environment and we can use all MATLAB
programs and procedures. As our numerical experimentation has demonstrated, the major
disadvantage of the FEMLAB is underdeveloped meshing procedure and impossibility to modify
the solver routine. It limits the applicability of this tool (in it current version) to relatively simple
geometries with not large number of elements.

12.2 Formulation and Normalization of the Governing Equations.

First, we consider the filtration part of the equations as it follows from Eq. (21)

%St—+Vo(w1)=O; and w, =S-(v,-v,)

This is expression for water content, similar equation can be easily written for gas phase.
For the successful numerical analysis we have to determine material constants and extract J-

Leverett functions from the available experimental and theoretical evaluation. We conduct
combined theoretical-experimental study on formulating and calibrating models parameters. The
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particular form of J-Leverett function and its relation with acoustic loading is the subject of the
thermodynamic analysis.

Now, have to emphasize the very important point of the “elastic-plastic” decomposition. This
has been already described in the “theoretical” part of the report but we repeat it again in
numerical part of the report. Motion of the fluid is to be decomposed into two parts: elastic or
dynamically induced inertial motion and the motion induced by pressure/saturation and
controlled by modified D’ Arcy law. In other words, we decompose the total motion into
“elastic” wave-related motion and “plastic” filtration flow®:

V= Va)'namiml + vﬁ[lralinn

The D’Arcy part of the flux is described by gradients and as shown in Chapter 7 can be
expressed as

v(sP). ,_KK

N H
if we neglect effects of solid finite dilatation. Finally, the conservation law can be re-written as
follows:

Yoty =k

%:V-(k(S)L]S)S-)-)JrV-(S-(v,—vs))

The similar equation can be derived for the gas phase. Equation for the dynamic equilibrium .has
the following general form

T(S)-%—Pg +P = J(S)
These constitutive relations are supplemented by the definition of the Leverett function,

simplified form of which is: J(S) = - ColS = Spaae) ,
(S - Sleﬁ )(1 - S)

and S;, is the dynamic saturation equilibrium specific for the pair porous media-fluid. In our

where Sieq is the left saturation asymptote

current calculations T(S) has been taken as a constant. In limiting case of equilibrium ( g—f =0)

this equation is equivalent to well-known Laplace —Leverett equilibrium condition.
Combining together both transport equations for liquid and gas and the equilibrium condition

and eliminating time derivatives from the first two equations, we obtain the following system of
two elliptic and one first-order equation

~T(S)-K,-V-[S*-VR +S8-VS-B]+V -84, -v,)+ B - B, =-J(5)
1-T(8)-K, -Vo[(l—S)z .VP, —(I—S)-VS-PZ]+V-(1—S)(vg ~v,)+ P, —P =J(S)

os C. (S-S
) left

® This decomposition is also correct for finite deformation and similar to the velocity gradient decomposition in
deformation plasticity.
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This system describes only “viscous” part of the system, or, in other words, only filtration part. It
is coupled with dynamic part mostly through species velocities but also through the pressure
distribution.

12.3 Normalization and Calibration of the Parameters

During this project we analyze harmonic signals, so the natural choice for time scaling is 7 = wft .

For the stability of numerical procedure, it is desirable to get the coefficient in front of highest
X

Kk

ug

derivative of the order of unity. This dictates the choice of special scaling: X = =
VKT

This set of substitutions leads to introducing of new normalized parameters/variables:

C= E%; and P = —P—? It is easy to see from these groups that the role of applied “static”
@ @

pressure gradient decreases with the increase of the applied acoustic frequency9.

There are two limited cases of the problem of acoustic enhancement of mass transfer in porous

media. The first reflects the case when small vibration perturbs filtration process. The principal

V(P S)
S

when coefficient of filtration K is relatively large. Asymptotical analysis of this situation has
been reported in the section above. The other limiting case corresponds to small permeability

(say, k~le-15) and the problem becomes close to singular perturbation (£X + x + o’x = f). The

numerical finite element software developed in this program covers wide range of the parameters
variation.

term in the equation here is V - (k(S) ) . This corresponds to the numerical situation

In order to calibrate and verify the developed model we need evaluate material parameters and
fit model parameters against experimental data.
For isotropic Toray paper the following material parameters are accepted:

+A +
ﬁ,=i2—l—z30Ksi; y:flz—”izzoKsi; p ~1000kg /m’ and porosity ¢ = 0.75.

Material properties for Toray-paper bulk compressibility is K, ~ 30 Ksi and for structural fibers
is K, ~20Msi,also pg,, ~25Msi~ 160 GPa . Viscous properties and acoustic waves decay

for this material has been accepted from literature review and based on averaging for test results
for different woven carbon materials:

® Other normalizations are possible, however we stopped on the described above. We have checked several different
substitutions of which the most numerically-convenient lead to the normalization of the coefficient in front of

(A+2p) K
r H |¢S|2 ’

~ X
X =—, where [ is the

D’Arcy term in the dynamic system. For example, 7 =

characteristic size
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0)2

A=A y~ —2;3-(%77 +¢) (Ref. Landau and Lifshits Hydrodynamics). Calculating plane
wave decay (y) based on Delany and Bazley laws we were able to estimate

7=0.05+0.5 Mpa-sand { = 0.02+0.2 MPa-s. Elastic generalized Biot coefficients have been
evaluated based on elastic properties as follows:

qg=690MPa-§; t=0.04MPa-¢§; r=220MPa-¢§; s=0.12MPa- ¢; where modified Biot’s
coefficients has been expressed:

O=qg,=q¢S; R=re =rgS; T= te, =tp(1-8); S = se, = s¢(1-S). It is important
that we assumed that g, ¢, , and s are constants and do not depend on saturation.

Next, we estimated transport properties, which requires fitting of model parameters.

Viscosity of water is assumed to be equal

—0.5¢0 =S¢ — k:y oy = =2e-5ke
Hyoer =0.5cp =5¢ -4 m.s> Hea =0.022¢p=2e-5 m. s+ Weneed to evaluate

permeability of water in the porous. Using Klinkenberg effect we approximate kp ~ 14K,

Testing of water permeation through substrate at different pressure gradients have been
conducted at UTRC and UTC Fuel Cell. We fitted the flux vs. pressure finite element
calculations against experimental data as shown in Figure 12 below.

Flux Through Porous substrate

0.14
0.12 “I“.I e
014 - o ’/,I B exeriment
L 3
£ o0 r ,
£ ws/ =~ w= calculations 1
x 0.06 -
32
“ 004 - o] » = aclaculations 2
0.02 .
0 g calculation 3

0 10000 20000 30000
Pressure Gradient [Pa)

Figure 12. Fitting transport parameters against experimental

We varied several major parameters of the system aiming to obtain the closest fit. Leaving the
question of the uniqueness open, we are able to find the set of parameters providing good fit.
With decrease of viscosity T, the flux increases; Coefficient Co —magnitude of Leverett function
defines the rate of stabilization and with the increase of Cg the flux decreases.

Calculated fitting parameters are shown in Table 1.

Calculations 1 | Calculations2 | Calculations 3
K 3E-15 3E-15 3E-15
T 0.6E5 0.6E5 1.E5
Co 0.8E4 1.E4 1.E4
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More exact fitting, especially for big pressure gradients can be obtained by the use of
Forchheimer model'®. We have done some numerical experiments in that direction but this work
is out of scope of the reported project.

12.4 Boundary conditions.

The system derived above belongs to mixed hyperbolic-parabolic type, vibration part being
hyperbolic and filtration parabolic wit ordinary differential equation for static pressures.

For vibration part zero normal forces are defined on free boundaries:
n oy =(2-0,+M,-6,+My-0,)n -5,+2-pn e =0

nj-afj =-p,-h; -0, =nj-é',.j-(M,-9, +M,S-0s+Mg,-6’g)=0
n,-of =—p,-n -8, =n -8 (M, 0,+M,-60,+M,-6,)=0

on fixed boundaries zero displacements are defined for all phases:

u, =0u, =0u, =0.

Boundary with excitation:

(m -uy)n =f(6);u, —(n-u,)n=0;u, =0;u, =0
where f(f)is a given motion of the excitation boundary. It can be pulse-like or periodic.

To be consistent it requires appropriate definition of velocities:
(n-v,)n=0f(@)/ot;v, —(n-v,)n=0;v, =0;v, =0.

For filtration part the boundary conditions should reflect the physical conditions of water
removal from the boundary. As one can see from the Constitutive relations for static pressures
above, the sign of derivative 8S/d¢ on the boundary depends on the relation between boundary

values of static pressures {Pg , P,} , which means that varying due to vibration saturation S might

change this condition from imbibitions to drainage and vice versa. To obtain net drying effect a
boundary condition that prevents liquid flow from the outside must be imposed when aS/ot > 0.
It also means that to achieve overall drying effect caused by vibration, a physical mechanism
preventing reverse flow back into sample must be found. In other words, a boundary that is open
for liquid exchange must favor liquid flow in one direction. That can be due to fast removal of

19 The transport law for such a model has the following form:

B kl (S) H
(a, -|S-q,| + 1) -S-q,=- 5 -V(S . P,) and predicts the convex shape of the flux vs.
pressure curve.
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water from the boundary with the rate higher than the frequency of vibration or applying special

hydrophobic boundary layer. Therefore, the boundary conditions on the boundaries opened for
liquid flow is:

., O
})8 =boundm3< };;P[ =b0umlary B lf E;S <0

Fluxg =b0""dar-" Jg ;Fluxl =bmmdary Jl;if -g;S >0

soundary Vg = O3poundary J; = 0 means the best case condition for acoustic water removal.

[Flux,)“_K piE i (V(€/P)+W:)
e (Ve R ) 4w,

12.5 Results of Numerical Calculations for Different Boundary Conditions

First we considered the problem in the rectangular with pressure defined as boundary
conditions as shown in the scheme. Vibration is applied to the upper boundary as follows:

. Ou — . .
u, = Asin(wt - kx), and v, = a—ty There are two limiting cases depending on material

Butace S (S) Displacement: [ust (ust).us2 (us2))

1 1 i
e | 05 [ 05

-
¥
o
k]

Figure 13. Deformed shape of the plate .
Contours of Saturation are shown.

parameters and BC. The first, when vibration [acoustic pressure] is small with respect to applied
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to boundaries “static” pressure gradient. The second case corresponds to the situation when
acoustic pressure is large in comparison with static pressure gradient. We have considered both
situations. The Figure below illustrated the simplest deformed shape of the structure.

The results of calculations corresponding to the first situation are shown in Figures 13-16.
Saturation distributions under both static and small vibration conditions are similar to each other
and show steep saturation gradient near to sink. Figure 14 illustrates formation of steady

distribution.

H 4 i N s
o 01 02 03 84 05 08 (.24 g8 0s
ArcLengh

Figure 14. Saturation Distribution in the
layer after different time till reaching the
steady regime. No vibration applied.

it
oo 100 19T2
0§ e 100, 1T stoncy
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n L 1 ' i t s i i
01 02 03 04 [ L1 X4 03 08
Arc Length

Figure 15. Distribution of Steady
Saturation with and without vibration

The total effect of small vibrations on total water content is small and illustrated by graphs in
Figure 15. These direct finite element calculations are in good agreement with analytical
(asymptotical) analysis (part 9), which in turn predicts second order effect of small vibration on
water content in the porous unsaturated media. It is important that in this calculation the water
transport is primary controlled by filtration process.

~
“
res
')
L3

0 1

Figurel6. Decrease of transient time
with frequency of applied vibration

The most pronounced effect of vibrations on
transport process is substantial acceleration of
water transport. Under vibration impact,
transient period is insignificant in comparison to
pure D’Arcy filtration (static) case. Thus, under
pressure boundary conditions and dominating
filtration term the water just follows the motion
of the solid phase. This leads to fast process
stabilization and to small integral effect in flux
evaluation as shown in Fig. 16. The
homogenization of water distribution is
significantly faster under vibration impact.
Increase of the effect relates with the increase of
the term V-(S(,,,, —V.ua)) - Therefore, this

product after averaging should be not only significant but noticeably changes with space to
guarantee existence of not small derivative (div).
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Figure 17. Formation of the boundary layer on the
top boundary under acoustic impact.

During each half-cycle water efficiently drains from the bottom boundary and imbibes back
during another half cycle. The same situation is observed on upper boundary. Only with the
development of the mechanism preventing back imbibing from the surface or in other words the
way of fast removing water from the surface would lead to effective acoustic drying.

Another qualitative situation appears when filtration coefficient is small (as typical for
Toray paper and bi-layer) and, therefore, coefficient in front of highest derivative is a small
parameter. This and pressure boundary conditions leads to creation of a boundary layer. The
characteristic size of such boundary layer can be evaluated by equating orders of both terms in

transport equation above: / ~ KT ~ —IEMT ~1+5 um. The thickness of the boundary layer is
#w(m’r

about several percents of the cathode porous layer. All changes consisting the boundary
conditions with the bulk solution take place in this boundary layer and saturation in the internal
part of the porous plate practically does not change with vibrations. As can be seen from the
Figure 17, the region with decreased water content occurs inside the porous plate and. the
saturation is higher at surface regions, therefore water flux is directed inside the porous plate. In
other words, during vibration, plate starts imbibe water, if pressure is defined on the boundary.
This is very important situation for PEM FC materials because calculations fit range of material
constants. This leads to the conclusion that the most important process of acoustic drying is
effective water removal from the surface. Assuming it is technically possible to realize, we
analyze water transfer under this semi-permeable boundary conditions. The modeling results
provide us with upper bound estimations of the amount of acoustically induced water flux.
Acoustically induced flux is naturally more pronounced if applied static pressure gradient is
small. We have numerically analyzed in details the situation when the in-bound water flux at the
sink boundary is semi-sealed. As was described in the previous section, we implemented such a

semi-permeable physical model by constraining the boundary conditions as I I'ndA>0.
boundary

The set of cross-section snapshots of water saturation (S) reflecting dynamics of saturation with
normalized time under influence of structural waves. “Low” bottom is semi-sealed: if
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oS . o .
I 2 d4>0, then flux is zero, otherwise is not constrained. Pressure on the “upper”

boundary

boundary has been set constant P=0. The detailed (in time) set of snapshots is shown in the
Appendix IT1. Below we show only the most important pictures.
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Figure 18. Series of snapshots of water saturation distributions under the impact of structural
vibrations. Development of thin “boundary layer on the top boundaries observed under

“tension” mode of vibration.

As can be seen from the Figures 18 reflecting the acoustically driven mass transfer, the
boundary layer is developed on the boundary where the pressure has been defined. Also, the

[onumeS 9A - Total Saturation
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Figure 19. Dynamics of acoustically driven water
drainage through semi-permeable boundary

integrated amount of water in the
plate gradually decreases on
approximately 5% and stabilizes
there. Process starts with relatively
fast drainage, then after first half of
vibration period the internal pressure
gradient is developed in such a way
that water would be imbibed from the
upper boundary. Up to time ~ 4.8
semi-permeable boundary conditions
lead to invariable amount of water
content in the porous media (see Fig
19). Then, during another period of
vibrations, pressure conditions change
again and drainage takes place. After
this the process is almost stabilized
and further drainage has not been

numerically observed. The most important conclusion from these calculations can be

summarized as follows:

@) The acoustically driven water removal from the porous plate is numerically observed;
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(i)  Acoustic drying is possible if and only if water removal from the surface mechanism
does exist. Otherwise, water is imbibed back immediately.

(ili)  The acoustic drying/drainage is very fast process, which requires only several
vibration periods to reach saturation;

(iv)  Total amount of the removed water under given parameters is not exceed 5%,

From the series of snap-shots showing changes in liquid and gas pressure with structural
(solid) vibrations demonstrate the structure of acoustic waves in the liquid and gas phases of
partially saturated porous media. Model calculations shown in Figures 20 (Detailed series of
snap shots are given in Appendix II) clearly show that liquid and gas motions follow the
solid structure vibrations. This effect takes place solely due to the “effective viscosity”
generated by D’ Arcy term in the constitutive equations.
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Figure 20. Series of snap-shots demonstrating changes in liquid and
gas pressure with structural (solid) vibrations

Figure 21 illustrates in-phase vibration of liquid and solid phases in both structural vibration
modes: longitude and shear waves. Therefore, the dynamics of saturation (liquid and gas) within

Yparameters variations might lead to increase of the removed water, but it would not exceed 10%.
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the porous structure is a strong function of structural waves. Very important result that can be
deduced from this numerical modeling is that under structural vibrations/waves applied to the

Ao PR Rme st s St o aemin o Tt s ) iy e e Ao 1R el e bt 220 et 3 b 1 Aot o2

L
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Figure 21. Displacement along (a-left four figures) x-direction (u;) of solid (left) and liquid (right) phases and
(b- right four figures) y-direction (uz) of solid (left) and liquid (right) phases

partially saturated porous body, the liquid and gas pressures have a non-trivial form and shape
within the body. The pressure strongly affects the diffusion coefficients and, therefore, affects
transport of species. The gas (oxygen in our case) transport would be determined by not a
diffusion as previously been accepted but by convection-diffusion mechanism.

13. Concluding Remarks

We have developed a unified model of structural/acoustic wave propagation in the PEM cathode
compartment and coupled it with mass transfer in the porous media. This is the first known to the
authors model of such kind coupling acoustics and filtration in porous media. A set of consistent
constitutive relations and governing equations for multiphase partially saturated porous dynamic
media have been developed using Lagrangian approach with subsequent inclusion of various
dissipative mechanisms. Developed unified methodology is useful for the wide range of Fuel
Cell problems as well as for the wide range of other porous structures and could serve as an
important design tool.

It has been demonstrated that the phase saturations have strong impact on wave dynamics in
porous continuum. Explicit expressions for generalized multiphase Biot-type coefficients that
explicitly depend on the phase saturations have been obtained.

We have succeeded to generalize filtration (D’ Arcy) law on dynamic system with water
saturation varying with space and time. It has been shown that the viration-induced flux is a
strong function of solid matrix distortion, saturation gradient and inertial forces. We also were
able to connect hysteretic phenomena to relaxation process due to gradients of filtration rate.

The developed homogenization technique is crucial for numerical analysis of high frequency
impacts. It allows circumventing restrictions on maximum allowed number of finite elements to

resolve spatial frequency of the acoustic/structural wave. Using asymptotic analysis we

51




demonstrated the crucial role of cathode geometry on the water-transport enhancement effect.
We also obtained analytical results evaluating the role of acoustic loading on the flow and
frequency and wave number dependencies of the effective mass driving forces. It has been
demonstrated using averaging principle that vibration gives rise to net change of saturation
inside porous medium. This effect is analogous to the known phenomenon of acoustic streaming
[18, 21] but has not been discovered before.

We conduct the extremely precise experimental procedure to measure bi-layer/substrate
permeability under vibration. Test results for different materials demonstrate (i) existence of the
effect, (ii) instability in highly hydrophobic structures under vibration and the strong correlation
between induced mass-transport and spatial inhomogeneity generated by structural waves.

The most useful application of the equations derived for time-averaged fluxes is when the
leading zero-order approximation is vanished. In the opposite case, vibration-induced fluxes are
small and the transport is determined by static pressure gradients. This also specifies potential
application of the vibration-induced saturation dynamics. It is most useful when for some reason
pressure-induced transport is either impossible or undesirable. Numerical results demonstrate
that applied structural vibration/acoustic loading (i) intensifies the process dynamics or in other
words decreases time of transient process; (i7) might drain out up to 5-10% of distributed in
porous media water if the mechanism preventing reverse acoustic-driven imbibitions is in place;
(iii) The fast water removal from the surface is crucial for acoustic-driven drying; (iv) Ina
working Fuel Cell, vibrations cause increase of the water flux from the porous cathode in both
directions out to WTP and back to the catalytic layer, which in turn makes the Fuel Cell
performance worse; (v) Acoustic/Structural vibrations accelerates the stabilization of the system
(porous media-liquid-gas) at some level predefined by material properties in general and by
Leverett function in particular. Therefore, for over-saturated porous media, vibrations lead to fast
drying up to stable level and, subsequently, for FC performance improvement. If the initial
saturation is smaller then the steady-stable level, the porous layer would be immediately imbibed
up to the stable level and, subsequently, performance would deteriorates. Both types of
phenomena have been observed (see also, [22]) in practical nature.

On the base of the results mentioned above, we make the following practical conclusions focused
on results industrial (fuel cells) implementation: (i) Acoustic/structural vibration drying can be
used when other mass-transfer driven processes are small. It means that the best operational
moment for the application of the acoustics is the shutdown drying preventing from possible
frosting of the PEM fuel cell cathode compartment. Another optimum performance regime is
fuel cell dry start up, when vibrations would significantly cut the start-up stabilization (warming)
time. (ii) Fast and efficient water removal from the surfaces and interfaces is crucial for the
acoustic drying. Much work needs to be done to develop such a material/technology design. This
work shows the direction for the optimal material selection. (iii) Based on numerical results, one
can conclude that the acoustically driven material drying (water drainage) is the fast process,
therefore, the application of vibration field should be performed as a short impulse series,
preferably while source or sink of water is sealed (start-up and shutdown). (iv) Project results
show that cathode compartment acoustic cleaning would be beneficial if the cell is turned-off at
the moment of cleaning. Therefore subsequent short-time (~1 min) disconnections of one or
several cells from the stack for a cleaning would provide positive performance effect.
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Appendix |
Introducing the new variable S = ¢, /(1- &, ) the system takes the form:

_ ] G
Q(S)_ﬁ. ,u,‘-V~K,SI(VS[B—Z-F,P:|+Z--6—IS-F,K)
WS gy, (1-5) (V-8 - ]2 S 0-) R

where
& =1-¢g, - porosity;

F’ g-V-u +r-V-u, +£-b-S-V-u,
F') \t-Vou,+6:5-(1-5)V-u +5-V-u,

0 _ 0
(FIK] p/"a_t“1+(P1'ﬂ1+pg'(S1_1)':Bg1)‘a7(u1"“s)
7| @ . d
¢ pg'_a_tug+(pg'ﬂg+p1'((l_‘g) _1)"Bgl)a(ug_“S)
and constitutive relations for {E , Pg} :
, 0 . 0
P -B=J° (S)+T-5;S for drainage (5S<Oj
and
imb a . e v e 6
P, —B =J"(S)+T-—=S forimbibition | —S>0
¢ ot ot
. 0 0 0
Here equation P, —F =J (g,,s )+F —¢,,—¢&, | has been resolved versus —S due to the
g & oot ot

simplifications above, with two branches correspondent to drainage and imbibitions respectively.

Additional, substantial for analytical evaluation assumption, is that the vibrations {us U, U g} are

caused by a vibrator attached to the porous matrix such that, when it is turned off,
{us,u,,ug}= 0. So, the case of small vibrations {us,u,,ug}~ Ais considered where Ais small

amplitude of external source.

Asymptotic analysis.
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As it can be seen from the above, two forces F'." stemmed from a source of vibration affect
fluid flow in porous material. As they are linear combinations of {us,u ;U g} and their time and

spatial derivative, one can conclude that in general the spectral composition of the forces
includes both natural frequencies of porous medium (Biot waves) and frequencies that
correspond to the particular porous layer structure. The whole picture, therefore, is both
geometry and material dependent and requires numerical analysis for any specific geometry. One
can show, however, in very general terms that periodic forces F,f;’ cause non-periodic mass

transport.

A change of variables:
S(x,t)= :S'-(x,t)+ A-s, (S,E,E,x,t) +A7-s, (E,P,,E,x,t) +...
B(xt)=B(x)+4 p! (g,-ﬁ,?g,x,t) +A-pl (g,E,F, x,t) +...

P.(x,t)= Fg(x,t) +A-pf (§,P,,Pg,x,t) +A%. pf (g,F,,E,x,t) +...

is sought in form of asymptotic expansion in A such that

P (S.P.Px,t)

}’;(x,t)} satisfy filtration equation without vibration terms:

JT (EF,,E) +A-J* (§,F,,7’;) + A2 J7 (§,E,Fg) +T- %:S'— for drainage [gg < 0)

T (S.B.E)+A-J(3.B.B)+ 4 I (SB.F)+T -g's' for imbibition (§§ > 0)
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The resulted equation for non-periodic variables {E(x,t),ﬁ,(x,t),_}_’;(x,t)} has the same type
and shape as the equation when vibration is absent (/1 = O). It is therefore, possible to interpret

K/# (S,B,?’;) as an effective increase in permeability and P"¢ (E,F,,Z) as an effective

increase in hydrostatic pressure due to applied vibration.

Functions K"# and P"# can be determined by substituting {S (x,1),B(x,1),P, (x,t)} with their
asymptotic expressions through {g(x,t),F,(x,t),E(x,t)} and {s,.(x,t), pl(x1), pf (x,t)} and

applying conditions that the time and space averages of {si(x,t), Pl (xt),pf (x,t)} are equal

Zero:
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9 “51(57'75’&1)”2 s;(i’ﬁf’g'x: + K,
ot -A-s, g,_j)l- Fg,x,t)—)f sz(E,-F,Fg,x t)_. =7.
[Kl(§+l'sl+ﬂ2-s2...):|- \

. (§+l.s e )_] V'(§+'1'sl+/12'Sz"')[-};/+'1'P|l+22-p;...—ﬂ-(1~'l"’+,1.']:;”):l
i - —1-56;(5“1'8.---)(1"."%-‘F,") |

[Kg (I ~S§-2-5-4 SZ)]

) - P +A-pF+ A7 ptl.
ly. v (1-S-4.5 -22.5.) ¢ : 2
& (1_§_,1,sl_,12.52_")-1 ( | SZ )I:—}“'(Ezp'*"l'lﬂp) :|

0

_ﬂ_a(l_g_,{.s,...)(F;‘ +-'FK)

where

d(u, -u,)

r Ou, =1
(FIP] oV Vaseb S, | () | Aat e Aea (518 )R
; )
P

t-Vu +¢-b-(1-5)-v. ,+5:Veu, FX . -
¢ ( ) s ! %+(pg'ﬂg+pl'((]—s) —])'ﬂgl)a(ug US)

and
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'EPY (+eb-s,-Veou, . g-V-'u,+7-V-'u,+£-b-S-V-'u,
'F; —£-b-s,-V-u, t-V-lus+g-b-(1—§)-V-‘u,+s-V-1ug

0
) e | -2 {o e (57 ) )20 )
IFK a a i 6
e/ | +Ph g’(l S) 6t( ;- u,) Py U 'u +(Pg',3g+p,-<(1—S)1—1)-ﬂg,)5(1ug—lus)

(Here {‘us, u, ug} are the second order terms in A to be calculated from the vibration part of

the full equation set with {&,,&, } substituted with {31 +&:8,6,—¢€ -sl} - not needed in equations

for slow variable in the second order in 4).
Po~Pi+A-(pf—pl)+ A -(Pf-pi)=

Jd'(§)+,1.a—']fr—_(-s—)sl + A? .|:62J"_’(S) (s1)2 + aJd’_(S) s21|+T-£(§+/1-s] + A -sz) =
oS S ot

os’ 2 G
7 (8)+ - g (SRE )+ 2 (ST E) ¢ T2 {5+ 405 4 475) for drainage (56;5 < o]

and

E—fwl-(pf—pf)+/12'(p§—pi)=

2 PR, o £ )

Jim (§) + AT (§ P, F) +A-J (E P, F) +T %(g + A5+ A7 ~s2) for imbibition (g;g > 0)

Now, collecting terms with the same power of A", one gets

59




v (K(SEE) S (v-3 RERE))-v (k(5) (v 55))
V-(K§(§,F, 7)-(1-5) '(V (1-5)-P(s F,,:)))=V-(K (1-5)-(1-3)"(v-(1-5)-P ))

) +T- 2S for drainage (ﬁg < OJ
ot o

H b g

Py — Py =Jm S,B,P)+T- 93 for imbibition 6§>0
0 1 a a

from which one can conclude:

K (§,F,,E)=K (s); Kg (E,P,,

H -V-[a';’_@)s, (5)"(v5-7)+K, (E)-(V.%)‘ﬁ, +K,(5)-(5)" V.(g,p{)]

) Io?’ﬁ

[ w9 (55 (7-(5-27)+ 2 5-5%)) }

. ,(Kg(l_g).(l_g)"(V.((,_g).ﬂn)%((]_@).pgk))]
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£ _pl= aJ"’ (g)s +T-£s for drainage (—6—§< 0)
PP — P a5 ! o ot

and

ar™(s) P 8=
g _pl= —~ ¢ +T.—s forimbibition | —S >0
F 28 41 P 1 Pyl (61‘ )

As it is clear from the expressions for forces F,”;P their time and space averages are zero in the

first order in A'. It follows then that in order {s,.(x,t), P (x1),pf (x,t)} have zero time and

space averages the following choice must be made:

The following set of linear equations describes then small vibrations of pressures and saturations
in the first order in A':

For A
of s |_K
o\ —s, £

! -V-(%sl (5)'v(5-P)+K, -(V%)E 1K, -(_S-)_]V-(g-p;))

s -v-(aaKEg 5 -(1—5)_lv((1—§)-ﬁg)—1<g -(Vl—sl—gjﬁg K, -(1_§)‘1v.((1_§).p§n

v, 05 (v(0-5) 7 )5 {1-5) %)
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aJ* (s d o=
pf-pl =%s, +T~—c,;t—sI for drainage [ES < OJ

and
aJm (E)

0 e g egese 0=
Pf ’Pll = Y s, +T-asl for imbibition (ES > O)

So far no non-zero contribution to the averaged equations for non-periodic motion caused by
external vibration has been obtained. To get the first non-zero terms one needs to calculate the
second order contribution in A2.

For A°
oI (S)(s ) ar*(s _
p-p= _5 )(S') + —( )s2 +T-—a-s2 for drainage (-Q-S<O)
oS 2 oS ot ot
and
aZJimh § 2 ajimh E _
p-p= _2( )(S') + —( )sz +T-ﬁs2 for imbibition (ES>O)
oS 2 oS ot ot

K(E5E) B (7 ()R ERE)

| ,,,-n.v{xam)-(g)'(v-(ﬁ)a’(aﬁz)%]

\
Y
<
D
~
Il
%]
N—
Nh
N——
p—
7]
g’
<
—
%]
:U
N—
+
A
—
%]
N
<
|
]
N—
=
+
ke
—
%]
=
9]
N—
<
—_—
%]
G
N’
| I— |
—

RPN N R
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u V-

6, Kf<§>p;w+[GK’-(§)‘K’-(§)]%

=5 Vp, +——=
55 1YP 5

i
+

_{lazxg(1—§)+xg(1—§)] () V(E._ﬁg)+[6Kg(1—§)+Kg(1:§)](s .pg)_V_§+_
: 'l

2 55 -5 J(1-5)

p' V- _ Z _ _
aKga(ng—S) ” Kg(l—S)plgvs]_[6Kg(1—S)~Kg(1—S)] SI_V(ISI J-Fg

S 8S 1-S

The same way as for 4', {s2 (E,F,,Fg, x,t), 28 (S P, Pg,x t), D (E,F,,E, x,t)} should not possess

slow non-periodic component. To satisfy that, one requests:

K (55.7)-(5) (v (S)E B RE)+ k(S ER)-(3) (v ()P (S.EE))
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2 o8 1-S (1_§)2 oS 1-S
axga(lE—S) o Kgl(_l—S)p = [ax (% S)_Kg](_l;)}li.s (]fg).—g

—Kg(1—§)[—V[ -2 e +(1_§)“v((l_g).f)+(1_g)"g((l_g).n}g)]

3
—
)
S——
]
|
N—
~
o
=
(=9
8.
8
S
I
“l
A
(=4
N——

Ji””(§)=ajm_(s) ()" o imbibition (25 >0
as 2 o

Equations for {s2 (S,}},Pg,x,t),p; (g,_é,f’;,x,t),pzz(L—S’-,_I;,,Fg,x,t)} are fully similar to the case

for A' and look as follows:
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HH

sz](g)" v(3-P)+K, (E)V{%Z-jﬁ, LK, (5)(@)‘v(§.p;)}

oS

R [a—Kg—(l—j‘)Sz](l-E)1V((l—?).;g)_xg(1_§)v(132§);g+

K, (1-5)(1-5) v((1-5)- »¢)
_ (

15K, (§)§+K,_§)J(sl)2 o(5.7 )+{6K, _(§)_K, _(§)](s AL
2 7 G s s M
aK'_(g) 5,Vp! + KI—(g) piVs, + {61(1_(5) KI"(E)]Sle(ij d
(o -2 ol T 2 |
. B o6 gw] |
e e
v aKga(lg_S)ﬁ‘—Kg (_I:S—) pVs, —[aKg(glg—S)_Kgl(_l;)}ﬁfv(l%);g
I e R A ]
R AR S CTIE PRI )
Here

~ 1

{(3=0-13=0) im — [ arax{..}

Summarizing, the {E(x,t),};(x,t),—ﬁ;(x,t)} that describe slow non-periodic transport in second

order in vibration amplitude A* satisfy the following set of equations:
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Here iV(i) and J;V(i_—) =0 as 5, being periodic.
S \S 1-§ \1-§

17K (1-5) . K,(1-5)) &F == (K, (1-5) K,(-3)
AR [2 s SR ](I—E)ZV( ) os e QN
3K, ;lg—s) o Kgl(—l ;s) =

ﬂ,-*.v-[—x,@)[v(%)mg(%)w+(§>"v(W)Jr(Ef‘g(EJ—FF)]— )

KO
R A R R (S RN
”g | 6Kg(l—§) <\ < 4 0 T K

o 0-8) [ ((1-5) )+ 2 (1-5) )

- — (8 (s} _ _

Pg—PzzJ"’(S)+ _( )(S‘) +7.23 for drainage (ﬁst

A 2 ot ot

and

5 3 O)GT o o5

Pg—P1=J""”(S)+ ~ ; +T— for imbibition (ES>O)

Here
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g (+e-besVou, ). 1/]7"1? B g-V-'u +r-V-'u+g-b-5-V-'u,
_g.b.sl.v.ul ’

'FT t-V-lus+g-b-(1—S)-V-1u,+s-V~‘ug

0
_pgﬂgl S2 of (u _us)

B
2

5, 0
pllggl(l S) 6t( —“s)
’TJ p:-gt (o B+p, (87 ﬁ) ~'u,)
B pg% (pgﬁ+p,( )ﬁ) ("u, - 'u,)

As it has been mentioned earlier, IF;’Z;P requires next order correction for {us,u 1ol } They are

not appear in the equations for slow variables in the second order in A and therefore are not
computed here.
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Appendix II.
Approximate solution by method of harmonic balance.

Assume now that {us,u ,,ug} is a harmonic wave:

us “3 sul

u, r=4°w rrcos(@-r+k-x)+< u, t-sin(@- 1 +k-x)
< s

u, u, u,

and calculate additional pressure and permeability that this simple vibration induces in porous
material. First, a response to this driving force needs to be calculated:

c $

s, 5, S
Pl p=1°p p-cos(@-t+k-x)+{ p| t-sin(a-1+k-x)
pf] Pt i

Substituting this into equations for {s,(x,t), p(x,t),pf (x,t)} one finds the following linear
system for amplitudes {‘s,, 5Pl bl DF, “‘pf}:

Waves and structural vibrations.

Keeping the terms with the highest order in {w,k} one gets

(Db P 0.1 0 0 o
SR c c ol
5P D, 1.0 00 (f' r

i ) F
D, (1-5) B0 0 0 1]]<y |
—_—] — s 1 _—s
-(1-5)"% b, 0. 0 -10||'P F
= ‘pf 0
-aJ/es Tw -1.0:1:0 ot ) 0
ey 1
| To —aJfes 1 0i-1.0 1
where
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k K, K\ VS K, K, A7) ®
42 — - .?P[.{. —_— g |V Ak .

[Dl) k-K, -k 0 S) S oS S K, k-K 'k
D) K, K 5 — —] e

: o e S a.VS_};—(aIS_KL]-VPg+ Fy 2

kKK, k| (85 1-5)1-5° \as 1-S K, kK, k

and

¢ gl q-k-”us+r-k-”u,+£-b-§-k-cug

sl q-k-sus+r-k-su,+g~b-§-k-sug

cFé t-k-”us+e-b-(1—§)-k-‘u,+s-k-cug

F* t~k-sus+£-b-(1—§)-k-su,+s-k-sug

[+

@ ¢ <! ¢ c
KK .k'(pl'k'Kl' “1+(p1'ﬂ1+pg’(s _1)';Bg1)'k'K|'( u, - “s)j
1
a)z s <! s s
kKK .k'(pl'k'Kl' “1+(p1':B/+Pg’(S _1)'ﬂg1)'k'K|'( u, - us))
+ 9 :
2] c <\ ¢
m(pleg ug+(pg',3g+p,-(<1—S) —1)',Bg[j‘k Kg ( u, - lls)j
g
a)z s <\ s
m-(p,-k-Kg~ ug+(pg-ﬂg+p,-((l—S) —1)-,Bg,)-k K, (‘u,- u)j

Eliminating {cpll . DL, pE pE } from the equations above one gets the system for {”sl, ssl} only:

— 7
—a—'_]_+-1_2— £ T'C’)—DI+Dg !
5 3 l_S '(CSIJ_(SF _ng)
72 P |ls) \FE—F
—T-(0+D1"Dg 6{+£—— = 1
oS S 1-8

2

and 57 = (%5, ) +(%s,) =(F' = F*) +("F* = F'Y

Shaking.
Spatial wave dependencies are neglected in this case. Keeping only the terms with the highest
order in @ one gets:
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) K, V(Kg(l —S)_l VS)

D

4

(cFl
sp!
¢ g
s e

T o

and

~aJ/as
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P =
V(K,-Z_‘g]

P =
°F' vk X5
sp! s
ch B ¢ P, <\! c ¢
S|E V'Kg'[ “g+['8g+ﬂgl'p_]'((l_s) _I)J'( us - ug)]
2 i
p, @ —
vk, YL
1-S
V-K -[‘u +(ﬁ +5 -ﬂ-((1—§)_l—1)}(su —*u )]
g g g gl s g
p -a)zn pg
X —
VK, .Y
£ 1-8

Eliminating {c Pl bl pe. pf } from the equations above one gets the system for {Csl, ‘sl} only:

1 —_—
vk (1-8)"vs
—2{—+D,+Dg o |T+EE ( ! ) )
oS 0 1
LV(K,S—‘vs)
A 1 __
vk (1-8)'vs
—w-| T+EE ( I( ) ) —9—{—+D,+Dg
0 1 oS
V(K,S7VS)
and

(SF’ + Fg)2 +(”Fg + F’)2

i ‘s, _ ‘FE 4 F!
ss1 sF[+s Fg

2
(—Q_+D, +ng +
S

o’ - T+g'# ! - !
Ky | v(K,(1-5)" vs) V(K,S7VS)
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Correlations of induced saturation and pressure.

Rewriting equations for {‘s,, O } in matrix notations,
L5, +3.p, =1/

G"-s, +J-pf =1

C-s,-1-p/+1-p? =0

for waves and

LSh'Sl +IP{ =f1xh

G".s, ~1.pf =f;h

C.s, -1-p/+1-pf =0

for shaking.
Here:
0 1 1 0) . . ;
J= A= with the obvious property J* - J =1; ]
-1 0 01
w,sh w.sh
Lw,sh =[ Dl NI) _Gw,sh = Dg Ng .C=("6J/6S T‘a) ) R
-N, D, | _Ng Dg -T-o -a‘]/aS
and

From this, first, expressions for {s,,p{,pf } can be found:
s =(C+I-L-3-6")" (1" -17)

P =J-(f,“’ L (C+I L -3.67) (g —rg"'))

P =3-(f -G (C+a L -3.67) ' (1 -17))

for waves and

s, =(C+L*+G*Y (1 + 1)

Pl = " -L"-(C+L* +G*)" (£ +1)

P = +G"(C+L" +G* )" (£ + 1)
for shaking.

72



And then the correlations entering equations for the second order might be expressed:
T w w w w
2T (fl _fg)'(fl —fg)

S =88 =

~ det(C+J-L"-J-G")

-1 1

sp="s, = (§-1) (C+I-L'-J-G") -J-(f,"’—L“’ (C+IL-J3-G") (f,"’-f;))

1

oot =Tspt = (6 -6) (C+Iw -36r) (67 -6 (CHa L —a6n) (1 -17)

5 'Vpll = Vs, 'pll = Tsl -J-p{ k=
(g -)-(c+I L -T6") -(f,“' U (C+I-L-3-Gr) (8 —fg“'))-k

4

s, -Vpf = Vs PP = Tsl~J-pf-k:
1

"7 -1)- T (C+I L -3-67) {7 -G (CHI L -G (7 -1;)) K

for waves and
— _T(f,w+fgw)-(f,w+fgw)
det(C+L" +G* )

S =88, =

s ="s, 0, = (5 +17)7 (C+L7 +G*) -(f;” (o P e o ))

-1

sopf =8 opE = (64 0) T (CHL +67) (67 -G (CH L + 67 ) (87 41y )

for shaking.
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Appendix lli
Dynamics of saturation

Detailed sequence of snapshots demontsrating the change of watert saturation with time is shown
below.
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Gas and liquid pressure.

Comparison between gas and liquid pressure with structural vibrations is shown in figures
below. One can see the degree of in-phase oscillations.

Tme=0 Soface: p1 (1) Dwspiscemont fus fust).us fus2)| Tume=0 Surtace p2 (p3) Dsphacemene [us fus1).us2 fusd)]
12 N ™ T T T T T

12 '

T
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Liquid versus solid displacement: the mode perpendicular to the excitation.

Figures below illustrate x-displacement of solid and liquid phases with time

TS Suhice st bt}

o2

o4

"

a5}
[ 1]

[+ 3

)

-
B0 Sirface o (o1} t
12 v
e
' 3
(1) -4 4
2
0 ’
o4 1 02
€2 <
5
°
08
o2 y
-
-
3
%0
12 4
1 E
o ]
[ 21 g
o4} g
: 2
02 o
0 - 4
22 : i 41 N
i A 1 i
s + a8 L L L] t 15w awm

78




2 1G58
T2 S0229 Surtace ult (dT) Drwphacemene [us1 {us1).us2 s}
» oces T iy T
om
f J
- o8
i 0 0 o8 1
0 008
(471 1
o
0005 04
]
laoss o2 ]
1 0w ° J
ou : i
L i i L i
18 oo 1 0% ] [3 1
Tarer? 70555 Surface 033 (us1) Dwpliacement fos) (o31).092 (2] Tere-3 2065 Sutfare uhh (W) Dvsptacamont fusl (ustlus2 (usd))
13- H H : o] i )
. 65 8 |
ot B 113
ot 1 o6 ]
o4 h 04 -
82 [} 3 1
o - 1 P E
02 R S R . ; i .
18 05 1] 18 B 98 L] s 1
1 p
8 1
oot R |
0s -
o2 .
o E
1 i i I i
B} 05 [] [ 1 o D013
- OO Q5167
3
o
i)
002
oo
u
00
om
003
o
005
LRl

79




[ 1]

az

Ve 22 Surtice oyt 4T} Drptacemant fst (oat) ue2 fad)}

)

Tevent 083 Sustace 017 fes?) Owiptacoment fost fovt)oe2 )

22

A

o4

02y

Toorf 21559 Sutace oft (W) Dvgacemeen [us? (o t)oe2 syt

L)

L1

o4

02

3 4

Torer8 0051 Suttace ot (ST) Drsctacement st fost) on? (i)}

a4

02

— ;i

0%

02

Solid versus liquid displacement: the mode collinear with the excitation.

Next set of figures illustrates the comparison between displacement of solid and liquid phases in

y-direction, along the plate thickness.
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